标签:自动 ping hdfs color 逻辑 排序 NPU output instance
1. 自定义GroupingComparator
1.1.需求:有如下订单
现在需要求出每一个订单中成交金额最大的一笔交易
1.2.分析:
1、利用“订单id和成交金额”Bean作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,
发送到reduce
2、在reduce端利用GroupingComparator将订单id相同的kv聚合成组,然后取第一个即是最大值
定义订单信息bean,实现CompareTo()方法用于排序
package cn.bigdata.hdfs.secondarySort; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; /** * 订单信息bean,实现hadoop的序列化机制 */ public class OrderBean implements WritableComparable<OrderBean>{ private Text itemid; private DoubleWritable amount; public OrderBean() { } public OrderBean(Text itemid, DoubleWritable amount) { set(itemid, amount); } public void set(Text itemid, DoubleWritable amount) { this.itemid = itemid; this.amount = amount; } public Text getItemid() { return itemid; } public DoubleWritable getAmount() { return amount; } //1.模型必须实现Comparable<T>接口 /*2.Collections.sort(list);会自动调用compareTo,如果没有这句,list是不会排序的,也不会调用compareTo方法 3.如果是数组则用的是Arrays.sort(a)方法*/ //implements WritableComparable必须要实现的方法,用于比较排序 @Override public int compareTo(OrderBean o) { //根據ID排序 int cmp = this.itemid.compareTo(o.getItemid()); //id相同根据金额排序 if (cmp == 0) { cmp = -this.amount.compareTo(o.getAmount()); } return cmp; } @Override public void write(DataOutput out) throws IOException { out.writeUTF(itemid.toString()); out.writeDouble(amount.get()); } @Override public void readFields(DataInput in) throws IOException { String readUTF = in.readUTF(); double readDouble = in.readDouble(); this.itemid = new Text(readUTF); this.amount= new DoubleWritable(readDouble); } @Override public String toString() { return itemid.toString() + "\t" + amount.get(); } }
自定义Partitioner用于分区
import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Partitioner; public class ItemIdPartitioner extends Partitioner<OrderBean, NullWritable>{ @Override public int getPartition(OrderBean bean, NullWritable value, int numReduceTasks) { //相同id的订单bean,会发往相同的partition //而且,产生的分区数,是会跟用户设置的reduce task数保持一致 return (bean.getItemid().hashCode() & Integer.MAX_VALUE) % numReduceTasks; } }
自定义GroupingComparator,在调用Reduce时对数据分组
package cn.bigdata.hdfs.secondarySort; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; /** * 用于控制shuffle过程中reduce端对kv对的聚合逻辑 * 利用reduce端的GroupingComparator来实现将一组bean看成相同的key */ public class ItemidGroupingComparator extends WritableComparator { //传入作为key的bean的class类型,以及制定需要让框架做反射获取实例对象 protected ItemidGroupingComparator() { super(OrderBean.class, true); } @Override public int compare(WritableComparable a, WritableComparable b) { OrderBean abean = (OrderBean) a; OrderBean bbean = (OrderBean) b; //将item_id相同的bean都视为相同,从而聚合为一组 //比较两个bean时,指定只比较bean中的orderid return abean.getItemid().compareTo(bbean.getItemid()); } }
编写mapreduce处理流程
/** * Order_0000001,Pdt_01,222.8 * Order_0000001,Pdt_05,25.8 * Order_0000002,Pdt_05,325.8 * Order_0000002,Pdt_03,522.8 * Order_0000002,Pdt_04,122.4 * Order_0000003,Pdt_01,222.8 */ public class SecondarySort { static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{ OrderBean bean = new OrderBean(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] fields = StringUtils.split(line, ","); bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[2]))); context.write(bean, NullWritable.get()); } } static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{ //到达reduce时,相同id的所有bean已经被看成一组,且金额最大的那个排在第一位 //在设置了groupingcomparator以后,这里收到的kv数据就是: <1001 87.6>,null <1001 76.5>,null .... //此时,reduce方法中的参数key就是上述kv组中的第一个kv的key:<1001 87.6> //要输出同一个item的所有订单中最大金额的那一个,就只要输出这个key @Override protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { context.write(key, NullWritable.get()); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SecondarySort.class); job.setMapperClass(SecondarySortMapper.class); job.setReducerClass(SecondarySortReducer.class); job.setOutputKeyClass(OrderBean.class); job.setOutputValueClass(NullWritable.class); FileInputFormat.setInputPaths(job, new Path("F:/secondary")); FileOutputFormat.setOutputPath(job, new Path("F:/secondaryOut")); //在此设置自定义的Groupingcomparator类 job.setGroupingComparatorClass(ItemidGroupingComparator.class); //在此设置自定义的partitioner类 job.setPartitionerClass(ItemIdPartitioner.class); //设置Reduce的数量 job.setNumReduceTasks(2); job.waitForCompletion(true); } }
文件:
Order_0000001,Pdt_01,222.8 Order_0000001,Pdt_05,25.8 Order_0000002,Pdt_05,325.8 Order_0000002,Pdt_03,522.8 Order_0000002,Pdt_04,122.4 Order_0000003,Pdt_01,222.8
Hadoop_26_MapReduce_Reduce端使用GroupingComparator求同一订单中最大金额的订单
标签:自动 ping hdfs color 逻辑 排序 NPU output instance
原文地址:https://www.cnblogs.com/yaboya/p/9254640.html