码迷,mamicode.com
首页 > 其他好文 > 详细

[UOJ310][UNR #2]黎明前的巧克力

时间:2018-07-02 19:21:05      阅读:132      评论:0      收藏:0      [点我收藏+]

标签:巧克力   mod   etc   ++   pac   href   har   oid   需要   

uoj

description

给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\)

sol

其实也就是选出一个集合满足异或和为\(0\),然后把它分成两半。
利用生成函数那套理论,就是对于每个\(a_i\),构造一个多项式\(b_i\),其中\(b_0=1,b_{a_i}=2\),然后把这\(n\)\(b\)做集合异或卷积。这样我们就得到了一个优秀的\(O(na_i\log a_i)\)的做法辣(雾)
我们考虑一下\(b_0=1,b_{a_i}=2\)的这个\(b\)做一次\(FWT\)后会发生什么。
\(b_0=1\)会使得每个位置\(+1\)\(b_{a_i}=2\)会使得某些位置\(+2\),某些位置\(-2\)。所以最终变换出来的序列里只有\(3\)\(-1\)
我们能不能手动构造一下这若干个\(b\)的积呢?显然是可以的。我们只需要知道每一个位置上\(3\)的个数就行了(因为不是\(3\)就是\(-1\),知道了\(3\)的个数也就确定了\(-1\)的个数)。
对于每个\(a_i\),在\(b_{a_i}\)的地方加个\(1\),然后把这个\(b\)\(FWT\)一下,得到的就是每一个位置上\(3\)的个数减去\(-1\)的个数。
所以就可以方便地构造出乘积然后\(FWT\)回去了。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
    int x=0,w=1;char ch=getchar();
    while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
    if (ch=='-') w=0,ch=getchar();
    while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    return w?x:-x;
}
const int N = 1<<20;
const int mod = 998244353;
int n,mx,len=1,a[N],b[N];
int fastpow(int a,int b){
    int res=1;
    while(b){if(b&1)res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
    return res;
}
void fwt(int *P,int opt){
    for (int i=1;i<len;i<<=1)
        for (int p=i<<1,j=0;j<len;j+=p)
            for (int k=0;k<i;++k){
                int x=P[j+k],y=P[j+k+i];
                P[j+k]=1ll*(x+y)*opt%mod;
                P[j+k+i]=1ll*(x-y+mod)*opt%mod;
            }
}
int main(){
    n=gi();int inv2=(mod+1)/2;
    for (int i=1,x;i<=n;++i)
        x=gi(),++a[x],mx=max(mx,x);
    while (len<=mx) len<<=1;
    fwt(a,1);
    for (int i=0;i<len;++i){
        int x=1ll*(a[i]+n)*inv2%mod;
        a[i]=fastpow(3,x);if((n-x)&1)a[i]=mod-a[i];
    }
    fwt(a,inv2);
    printf("%d\n",(a[0]-1+mod)%mod);
    return 0;
}

[UOJ310][UNR #2]黎明前的巧克力

标签:巧克力   mod   etc   ++   pac   href   har   oid   需要   

原文地址:https://www.cnblogs.com/zhoushuyu/p/9255263.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!