标签:turn return work \n href ret 最大值 最小值 答案
给定一个长度为 \(n\) 的字符串,求最长重复子串,这两个子串不能重叠。(题目模型需转换)
\(1\leq n\leq 20000\)
先二分答案,把题目变成判定性问题:判断是否存在两个长度为 \(k\) 的子串是相同的,且不重叠。
解决这个问题的关键还是利用 \(height\) 数组。把排序后的后缀分成若干组,其中每组的后缀之间的 \(height\) 值都不小于 \(k\) 。
容易看出,有希望成为最长公共前缀不小于 \(k\) 的两个后缀一定在同一组。然后对于每组后缀,只须判断每个后缀的 \(sa\) 值的最大值和最小值之差是否不小于 \(k\) 。如果有一组满足,则说明存在,否则不存在。
因为后缀是有序的,相邻的后缀间的 \(LCP\) 必定的极大的;接下来就找到每个组里后缀 \(sa\) 值最大和最小的,如果差值不小于 \(k\) 就成立,因为这样小下标的后缀沿着 \(LCP\) 下去走 \(k\) 步才不会盖到大下标的后缀。
#include <bits/stdc++.h>
using namespace std;
const int N = 20000+5;
int ch[N], n, m, x[N<<1], y[N<<1], c[N], sa[N], rk[N], height[N];
void get() {
for (int i = 1; i <= m; i++) c[i] = 0;
for (int i = 1; i <= n; i++) c[x[i] = ch[i]]++;
for (int i = 2; i <= m; i++) c[i] += c[i-1];
for (int i = n; i >= 1; i--) sa[c[x[i]]--] = i;
for (int k = 1; k <= n; k <<= 1) {
int num = 0;
for (int i = n-k+1; i <= n; i++) y[++num] = i;
for (int i = 1; i <= n; i++) if (sa[i] > k) y[++num] = sa[i]-k;
for (int i = 1; i <= m; i++) c[i] = 0;
for (int i = 1; i <= n; i++) c[x[i]]++;
for (int i = 2; i <= m; i++) c[i] += c[i-1];
for (int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i];
swap(x, y); x[sa[1]] = num = 1;
for (int i = 2; i <= n; i++)
x[sa[i]] = (y[sa[i]] == y[sa[i-1]] && y[sa[i]+k] == y[sa[i-1]+k]) ? num : ++num;
if ((m = num) == n) break;
}
for (int i = 1; i <= n; i++) rk[sa[i]] = i;
for (int i = 1, k = 0; i <= n; i++) {
if (rk[i] == 1) continue;
if (k) --k; int j = sa[rk[i]-1];
while (i+k <= n && j+k <= n && ch[i+k] == ch[j+k]) ++k;
height[rk[i]] = k;
}
}
bool judge(int x) {
for (int i = 2, maxn = sa[1], minn = sa[1]; i <= n; i++) {
if (height[i] >= x) maxn = max(maxn, sa[i]), minn = min(minn, sa[i]);
if (height[i] < x || i == n) {
if (maxn-minn > x) return true;
maxn = minn = sa[i];
}
}
return false;
}
void work() {
while (~scanf("%d", &n) && n) {
m = 88*2;
for (int i = 1; i <= n; i++) scanf("%d", &ch[i]); --n;
for (int i = 1; i <= n; i++) ch[i] = ch[i+1]-ch[i]+88;
get(); int L = 4, R = n, ans = -1;
while (L <= R) {
int mid = (L+R)>>1;
if (judge(mid)) ans = mid, L = mid+1;
else R = mid-1;
}
printf("%d\n", ans+1);
}
}
int main() {work(); return 0; }
标签:turn return work \n href ret 最大值 最小值 答案
原文地址:https://www.cnblogs.com/NaVi-Awson/p/9265123.html