标签:archive clu ret line c++ i++ -- lse 容斥
题意:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1805
题解:
根据cayley公式,无向图的每一个生成树就对应一个序列(共有n^(n-2)个),具体定义见 http://www.matrix67.com/blog/archives/682
根据定义,这个n-2项中没有出现的点为叶子结点,所以我们先求C(n,m)表示那些点为叶子,再乘上序列的数量
S(n,m) = C(m,0)m^n - C(m,1)(m-1)^n + C(m,2)(m-2)^n - .... (容斥定理)
#include<bits\stdc++.h> using namespace std; #define LL long long const int maxn = 1000100; const LL Mod = 1e9 + 7; LL jc[maxn]; LL ny[maxn]; LL ksm(LL x,LL y) { LL ans = 1; while(y){ if(y&1){ ans = ans*x%Mod; } y >>= 1; x = x*x%Mod; } return ans; } LL getc(LL n,LL m) { if( m == 0 || n == m) return 1; return (jc[n]*ny[m]%Mod)*ny[n-m]%Mod; } void pre(int n) { jc[1] = ny[1] = 1; for(int i = 2; i <= n; i++){ jc[i] = i * jc[i-1] % Mod; ny[i] = (Mod - Mod/i) * ny[Mod%i] % Mod; } for(int i = 2; i <= n; i++){ ny[i] = ny[i] * ny[i-1] % Mod; } } int main() { LL ans = 0; LL n,m; cin>>n>>m; pre(n); LL c = getc(n,m); LL k = n - m; while(k){ if((k&1) == ((n-m)&1)) ans = (ans+ getc(n-m,k) * ksm(k,n-2) % Mod )% Mod; else ans = (Mod + ans - getc(n-m,k) * ksm(k,n-2) % Mod)% Mod; k--; } if(n == 2 && m == 2) cout<<1<<endl; else cout<<c*ans%Mod<<endl; return 0; }
标签:archive clu ret line c++ i++ -- lse 容斥
原文地址:https://www.cnblogs.com/Tokisaki-Kurumi-/p/9270570.html