标签:main while lld wap ++ return inf scan def
需要支持把一个元素移到队首,把一个元素移到队尾,移到队首就直接放到队首前面那个位置,原位置标为0,队尾同理。
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
typedef long long ll;
const int N = 30000200;
using namespace std;
int n,m;
int q[N],hd,x,ed,P[N];
char s[1111];
void F(int x) {
int p = P[x];
swap(q[p],q[hd]);
P[x] = hd;
hd--;
}
void L(int x){
int p=P[x];
swap(q[p],q[ed]);
P[x]=ed;
ed++;
}
int main() {
scanf("%d",&n);
hd = 500000;
ed = hd + n - 1;
rep(i,hd,ed)scanf("%d",&q[i]),P[q[i]]=i;
hd--;ed++;
scanf("%d",&m);
rep(ti,1,m){
scanf(" %s %d",s,&x);
if(s[0]==‘F‘){
F(x);
}
else {
L(x);
}
}
int f=0;
rep(i,hd,ed)if(q[i]){
if(f)printf(" ");f=1;
printf("%d",q[i]);
}puts("");
return 0;
}
带限制的最大子矩阵,首先是与不带限制的最大子矩阵一样,最上边的边和底边,然后做最大子段和。带上了0的限制和长度限制,于是写了个双指针,就过了。(讲道理感觉双指针有点假。。。
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
typedef long long ll;
const int N = 555;
const ll inf = 1000000000000000LL;
using namespace std;
int R,C,X,Y,Z;
ll mp[N][N], sum[N][N], sum0[N][N], a[N], b[N];
int ck(int l,int r,ll x,ll y) {
if(r-l+1 <= Y && l<=r && r<=C && x<=Z) return 1;
return 0;
}
ll solve() {
ll res=0,ans=a[1],ans0=b[1];
rep(i,1,C)res=max(res,a[i]);
int l = 1, r = 1;
while(l<=r&&r<=C) {
if(ck(l,r,ans0,ans))res = max(res,ans);
while(ck(l,r+1,ans0+b[r+1],ans))++r,ans+=a[r],ans0+=b[r],res=max(res,ans);
if(ck(l,r,ans0,ans))res = max(res,ans);
ans -= a[l];
ans0 -= b[l];
++l;
while(a[l]<=0&&l<=C)ans0-=b[l],ans-=a[l],++l;
while(l>r)++r,ans0+=b[r],ans+=a[r];
if(ck(l,r,ans0,ans))res = max(res,ans);
}
return res;
}
int main() {
scanf("%d %d %d %d %d",&R,&C,&X,&Y,&Z);
rep(i,1,R)rep(j,1,C)scanf("%lld",&mp[i][j]);
rep(i,1,R)rep(j,1,C){
sum[i][j] = sum[i-1][j] + mp[i][j];
if(mp[i][j]==0) sum0[i][j] = sum0[i-1][j] + 1;
else sum0[i][j] = sum0[i-1][j];
}
ll ans = 0;
rep(l,1,R)rep(r,l,min(R,l+X-1)){
rep(k,1,C) a[k] = sum[r][k]-sum[l-1][k], b[k] = sum0[r][k]-sum0[l-1][k];
ans = max(ans,solve());
}
printf("%lld\n",ans);
return 0;
}
标签:main while lld wap ++ return inf scan def
原文地址:https://www.cnblogs.com/RRRR-wys/p/9275919.html