码迷,mamicode.com
首页 > 其他好文 > 详细

spark1.3.x与spark2.x启动executor不同的cpu core分配方式

时间:2018-07-07 13:53:25      阅读:169      评论:0      收藏:0      [点我收藏+]

标签:ecif   rev   def   BMI   core   机器   submit   根据   ons   

***这里的executor在worker上分配策略以spreadOut 为例***

1.3版本关键点:

for (app <- waitingApps if app.coresLeft > 0) { //对还未被完全分配资源的apps处理
        val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
          .filter(canUse(app, _)).sortBy(_.coresFree).reverse //根据core Free对可用Worker进行降序排序。
        val numUsable = usableWorkers.length //可用worker的个数 eg:可用5个worker
        val assigned = new Array[Int](numUsable) //候选Worker,每个Worker一个下标,是一个数组,初始化默认都是0
        var toAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)//还要分配的cores = 集群中可用Worker的可用cores总和(10), 当前未分配core(5)中找最小的
        var pos = 0
        while (toAssign > 0) { 
          if (usableWorkers(pos).coresFree - assigned(pos) > 0) { //以round robin方式在所有可用Worker里判断当前worker空闲cpu是否大于当前数组已经分配core值
            toAssign -= 1
            assigned(pos) += 1 //当前下标pos的Worker分配1个core +1
          }
          pos = (pos + 1) % numUsable //round-robin轮询寻找有资源的Worker
        }
        // Now that we‘ve decided how many cores to give on each node, let‘s actually give them
        for (pos <- 0 until numUsable) {
          if (assigned(pos) > 0) { //如果assigned数组中的值>0,将启动一个executor在,指定下标的机器上。
            val exec = app.addExecutor(usableWorkers(pos), assigned(pos)) //更新app里的Executor信息
            launchExecutor(usableWorkers(pos), exec)  //通知可用Worker去启动Executor
            app.state = ApplicationState.RUNNING
          }
        }
      }

以上红色代码清晰的展示了在平均分配的场景下,每次会给worker分配1个core,所以说在spark-submit中如果设置了 --executor-cores属性未必起作用;

但在2.x版本的spark中却做了这方面的矫正,它确实会去读取--executor-cores属性中的值,如果该值未设置则依然按照1.3.x的方式执行,代码如下:

 private def scheduleExecutorsOnWorkers(
      app: ApplicationInfo,
      usableWorkers: Array[WorkerInfo],
      spreadOutApps: Boolean): Array[Int] = {
    val coresPerExecutor = app.desc.coresPerExecutor
    val minCoresPerExecutor = coresPerExecutor.getOrElse(1)
    val oneExecutorPerWorker = coresPerExecutor.isEmpty
    val memoryPerExecutor = app.desc.memoryPerExecutorMB
    val numUsable = usableWorkers.length
    val assignedCores = new Array[Int](numUsable) // Number of cores to give to each worker
    val assignedExecutors = new Array[Int](numUsable) // Number of new executors on each worker
    var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)

    /** Return whether the specified worker can launch an executor for this app. */
    def canLaunchExecutor(pos: Int): Boolean = {
      val keepScheduling = coresToAssign >= minCoresPerExecutor
      val enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor

      // If we allow multiple executors per worker, then we can always launch new executors.
      // Otherwise, if there is already an executor on this worker, just give it more cores.
      val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutors(pos) == 0
      if (launchingNewExecutor) {
        val assignedMemory = assignedExecutors(pos) * memoryPerExecutor
        val enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutor
        val underLimit = assignedExecutors.sum + app.executors.size < app.executorLimit
        keepScheduling && enoughCores && enoughMemory && underLimit
      } else {
        // We‘re adding cores to an existing executor, so no need
        // to check memory and executor limits
        keepScheduling && enoughCores
      }
    }

    // Keep launching executors until no more workers can accommodate any
    // more executors, or if we have reached this application‘s limits
    var freeWorkers = (0 until numUsable).filter(canLaunchExecutor)
    while (freeWorkers.nonEmpty) {
      freeWorkers.foreach { pos =>
        var keepScheduling = true
        while (keepScheduling && canLaunchExecutor(pos)) {
          coresToAssign -= minCoresPerExecutor
          assignedCores(pos) += minCoresPerExecutor

          // If we are launching one executor per worker, then every iteration assigns 1 core
          // to the executor. Otherwise, every iteration assigns cores to a new executor.
          if (oneExecutorPerWorker) {
            assignedExecutors(pos) = 1
          } else {
            assignedExecutors(pos) += 1
          }

          // Spreading out an application means spreading out its executors across as
          // many workers as possible. If we are not spreading out, then we should keep
          // scheduling executors on this worker until we use all of its resources.
          // Otherwise, just move on to the next worker.
          if (spreadOutApps) {
            keepScheduling = false
          }
        }
      }
      freeWorkers = freeWorkers.filter(canLaunchExecutor)
    }
    assignedCores
  }

 

spark1.3.x与spark2.x启动executor不同的cpu core分配方式

标签:ecif   rev   def   BMI   core   机器   submit   根据   ons   

原文地址:https://www.cnblogs.com/zzq-include/p/9276915.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!