标签:lex sequence Plan new time nbsp algo style val
Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input:[10,9,2,5,3,7,101,18]
Output: 4 Explanation: The longest increasing subsequence is[2,3,7,101]
, therefore the length is4
.
Note:
Follow up: Could you improve it to O(n log n) time complexity?
Solution:
Using dynamic programming and binary search, a[i] for the min last value of increasing subsequence of length i.
class Solution { public int lengthOfLIS(int[] nums) { int[] a = new int[nums.length]; int max_len = 0; for (int i = 0; i < nums.length; i++) { int index = Arrays.binarySearch(a,0,max_len,nums[i]); if (index < 0) { int p = -index-1; a[p] = nums[i]; if (p == max_len) max_len++; } } return max_len; } }
Longest Increasing Subsequence
标签:lex sequence Plan new time nbsp algo style val
原文地址:https://www.cnblogs.com/liudebo/p/9278369.html