码迷,mamicode.com
首页 > 其他好文 > 详细

第三十二篇 玩转数据结构——AVL树

时间:2018-07-14 14:42:45      阅读:169      评论:0      收藏:0      [点我收藏+]

标签:success   二叉树   val   minimum   height   --   ima   amp   his   

 
 
 
1.. 平衡二叉树
  • 平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1。
  • 平衡二叉树的高度和节点数量之间的关系也是O(logn)
  • 为二叉树标注节点高度并计算平衡因子
  • 技术分享图片

     

  • AVL树是一棵平衡二叉树

2.. 实现AVL树的业务逻辑

  • import java.util.ArrayList;
    
    public class AVLTree<K extends Comparable<K>, V> {
    
        private class Node {
            public K key;
            public V value;
            public Node left;
            public Node right;
            public int height;
    
            // 构造函数
            public Node(K key, V value) {
                this.key = key;
                this.value = value;
                left = null;
                right = null;
                height = 1;
            }
        }
    
        private Node root;
        private int size;
    
        // 构造函数
        public AVLTree() {
            root = null;
            size = 0;
        }
    
        // 实现getSize方法
        public int getSize() {
            return size;
        }
    
        // 实现isEmpty方法
        public boolean isEmpty() {
            return size == 0;
        }
    
        // 判断该二叉树是否为二分搜索树
        public boolean isBST() {
            ArrayList<K> keys = new ArrayList<>();
            inOrder(root, keys);
            for (int i = 1; i < keys.size(); i++) {
                if (keys.get(i - 1).compareTo(keys.get(i)) > 0) {
                    return false;
                }
            }
            return true;
        }
    
        private void inOrder(Node node, ArrayList<K> keys) {
    
            if (node == null) {
                return;
            }
            inOrder(node.left, keys);
            keys.add(node.key);
            inOrder(node.right, keys);
        }
    
        // 判断二叉树是否为平衡二叉树
        public boolean isBalanced() {
            return isBalanced(root);
        }
    
        // 判断以node为根的二叉树是否为平衡二叉树
        private boolean isBalanced(Node node) {
    
            if (node == null) {
                return true;
            }
            int balanceFactor = getBalanceFactor(node);
            if (Math.abs(balanceFactor) > 1) {
                return false;
            }
            return isBalanced(node.left) && isBalanced(node.right);
        }
    
        // 返回节点node的高度值
        private int getHeight(Node node) {
            if (node == null) {
                return 0;
            }
            return node.height;
        }
    
        // 返回节点node的平衡因子
        private int getBalanceFactor(Node node) {
            if (node == null) {
                return 0;
            }
            return getHeight(node.left) - getHeight(node.right);
        }
    
        // 对节点y进行向右旋转操作,返回旋转后新的根节点x
        //        y                              x
        //       / \                           /       //      x   T4     向右旋转 (y)        z     y
        //     / \       - - - - - - - ->    / \   /     //    z   T3                       T1  T2 T3 T4
        //   /     // T1   T2
        private Node rightRotate(Node y) {
    
            Node x = y.left;
            Node T3 = x.right;
    
            // 向右旋转
            x.right = y;
            y.left = T3;
    
            // 更新height
            y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
            x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
    
            return x;
        }
    
        // 对节点y进行向左旋转操作,返回旋转后新的根节点x
        //    y                             x
        //  /  \                          /       // T1   x      向左旋转 (y)       y     z
        //     / \   - - - - - - - ->   / \   /     //   T2  z                     T1 T2 T3 T4
        //      /     //     T3 T4
        private Node leftRotate(Node y) {
    
            Node x = y.right;
            Node T2 = x.left;
    
            // 向左旋转
            x.left = y;
            y.right = T2;
    
            //更新height
            y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
            x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
    
            return x;
        }
    
        // 实现add方法
        public void add(K key, V value) {
            root = add(root, key, value);
        }
    
        // 向以node为根节点的二分搜索树中插入元素(key, value),递归算法
        // 返回插入新元素后的二分搜索树的根
        private Node add(Node node, K key, V value) {
    
            if (node == null) {
                size++;
                return new Node(key, value);
            }
    
            if (key.compareTo(node.key) < 0) {
                node.left = add(node.left, key, value);
            } else if (key.compareTo(node.key) > 0) {
                node.right = add(node.right, key, value);
            } else {
                node.value = value;
            }
    
            // 更新height值
            node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
    
            // 计算平衡因子
            int balanceFactor = getBalanceFactor(node);
    
            // 平衡维护
            // LL
            if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
                return rightRotate(node);
            }
            // RR
            if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
                return leftRotate(node);
            }
    
            // LR
            if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
                node.left = leftRotate(node.left);
                return rightRotate(node);
            }
            // RL
            if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
                node.right = rightRotate(node.right);
                return leftRotate(node);
            }
    
            return node;
        }
    
        // 返回以node为根节点的二分搜索树中,key所在的节点
        private Node getNode(Node node, K key) {
    
            if (node == null)
                return null;
    
            if (key.compareTo(node.key) < 0) {
                return getNode(node.left, key);
            } else if (key.compareTo(node.key) > 0) {
                return getNode(node.right, key);
            } else {
                return node;
            }
        }
    
        public boolean contains(K key) {
            return getNode(root, key) != null;
        }
    
        public V get(K key) {
    
            Node node = getNode(root, key);
            return node == null ? null : node.value;
        }
    
        public void set(K key, V newValue) {
            Node node = getNode(root, key);
            if (node == null)
                throw new IllegalArgumentException(key + " doesn‘t exist!");
    
            node.value = newValue;
        }
    
        // 返回以node为根的二分搜索树的最小元素所在节点
        private Node minimum(Node node) {
            if (node.left == null) {
                return node;
            }
            return minimum(node.left);
        }
    
        // 实现remove方法
        // 删除二分搜索树中键为key的节点
        public V remove(K key) {
            Node node = getNode(root, key);
    
            if (node != null) {
                root = remove(root, key);
                return node.value;
            }
            return null;
        }
    
        // 删除以node为根节点的二分搜索树中键为key的节点,递归算法
        // 返回删除节点后新的二分搜索树的根
        private Node remove(Node node, K key) {
            if (node == null) {
                return null;
            }
    
            Node retNode;
            if (key.compareTo(node.key) < 0) {
                node.left = remove(node.left, key);
                retNode = node;
            } else if (key.compareTo(node.key) > 0) {
                node.right = remove(node.right, key);
                retNode = node;
            } else {
                // 待删除节点左子树为空的情况
                if (node.left == null) {
                    Node rightNode = node.right;
                    node.right = null;
                    size--;
                    retNode = rightNode;
                    // 待删除节点右子树为空的情况
                } else if (node.right == null) {
                    Node leftNode = node.left;
                    node.left = null;
                    size--;
                    retNode = leftNode;
                    // 待删除节点左右子树均不为空
                    // 找到比待删除节点大的最小节点,即待删除节点右子树的最小节点
                    // 用这个节点顶替待删除节点
                } else {
                    Node successor = minimum(node.right);
                    successor.right = remove(node.right, successor.key);  //这里进行了size--操作
                    successor.left = node.left;
                    node.left = null;
                    node.right = null;
                    retNode = successor;
                }
            }
    
            if (retNode == null) {
                return null;
            }
    
            // 更新height值
            retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
    
            // 计算平衡因子
            int balanceFactor = getBalanceFactor(retNode);
    
            // 平衡维护
            // LL
            if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
                return rightRotate(retNode);
            }
            // RR
            if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
                return leftRotate(retNode);
            }
    
            // LR
            if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
                node.left = leftRotate(retNode.left);
                return rightRotate(retNode);
            }
            // RL
            if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
                node.right = rightRotate(retNode.right);
                return leftRotate(retNode);
            }
    
            return retNode;
        }
    
        // 打印测试
        public static void main(String[] args) {
    
            System.out.println("Pride and Prejudice");
    
            ArrayList<String> words = new ArrayList<>();
    
            if (FileOperation.readFile("pride-and-prejudice.txt", words)) {
    
                System.out.println("Total words: " + words.size());
    
                AVLTree<String, Integer> map = new AVLTree<>();
                for (String word : words) {
                    if (map.contains(word)) {
                        map.set(word, map.get(word) + 1);
                    } else {
                        map.add(word, 1);
                    }
                }
    
                System.out.println("Total different words: " + map.getSize());
                System.out.println("Frequency of PRIDE: " + map.get("pride"));
                System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
    
                System.out.println("is BST: " + map.isBST());
    
                System.out.println("is Balanced: " + map.isBalanced());
            }
        }
    }

     

第三十二篇 玩转数据结构——AVL树

标签:success   二叉树   val   minimum   height   --   ima   amp   his   

原文地址:https://www.cnblogs.com/xuezou/p/9309377.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!