码迷,mamicode.com
首页 > 其他好文 > 详细

D. Relatively Prime Graph

时间:2018-07-15 19:44:23      阅读:172      评论:0      收藏:0      [点我收藏+]

标签:using   ted   ssis   prim   xmlns   www.   gcd   OWIN   etc   

Let‘s call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)E(v,u)∈E  GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn‘t matter. The vertices are numbered from 11 to |V||V|.

Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.

If there exists no valid graph with the given number of vertices and edges then output "Impossible".

If there are multiple answers then print any of them.

Input

The only line contains two integers nn and mm (1n,m1051≤n,m≤105) — the number of vertices and the number of edges.

Output

If there exists no valid graph with the given number of vertices and edges then output "Impossible".

Otherwise print the answer in the following format:

The first line should contain the word "Possible".

The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1vi,uin,viui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u)there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.

If there are multiple answers then print any of them.

Examples
input
Copy
5 6
output
Copy
Possible
2 5
3 2
5 1
3 4
4 1
5 4
input
Copy
6 12
output
Copy
Impossible
Note

Here is the representation of the graph from the first example:技术分享图片

 

   这题无脑暴力 暴力真的出了奇迹 

   暴力枚举一遍就行了

 

    

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int maxn = 1e5 + 10;
 4 const int INF = 0x3fffffff;
 5 typedef long long LL;
 6 using namespace std;
 7 int n, m;
 8 struct node {
 9     int x, y;
10     node () {}
11     node (int x, int y): x(x), y(y) {}
12 } qu[maxn];
13 int main() {
14     scanf("%d%d", &n, &m);
15     if (n - 1 > m) {
16         printf("Impossible\n");
17         return 0;
18     }
19     int k = 0, flag = 0;
20     for (int i = 1 ; i <= n ; i++) {
21         for (int j = i + 1 ; j <= n ; j++) {
22             if (__gcd(i, j) == 1) qu[k++] = node(i, j);
23             if (k == m) {
24                 flag = 1;
25                 break;
26             }
27         }
28         if (flag) break;
29     }
30     if (flag) {
31         printf("Possible\n");
32         for (int i = 0 ; i < k ; i++)
33             printf("%d %d\n", qu[i].x, qu[i].y);
34     } else  printf("Impossible\n");
35     return 0;
36 }

 

D. Relatively Prime Graph

标签:using   ted   ssis   prim   xmlns   www.   gcd   OWIN   etc   

原文地址:https://www.cnblogs.com/qldabiaoge/p/9314221.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!