码迷,mamicode.com
首页 > 其他好文 > 详细

LeetCode 120 Triangle

时间:2018-07-16 11:14:55      阅读:150      评论:0      收藏:0      [点我收藏+]

标签:number   class   ext   this   pat   bsp   desc   cto   lse   

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle


The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

 

c++

class Solution {
public:
    int dp[1005][1005];
    int minimumTotal(vector<vector<int>>& triangle) {
        
        int len = triangle.size();
        dp[0][0] = triangle[0][0];
        for(int i=1;i<len;i++)
        {
            int l = triangle[i].size();
            for(int j=0;j<l;j++)
            {
                if(j==0)
                    dp[i][j] = triangle[i][j]+dp[i-1][j];
                else if(j==l-1)
                    dp[i][j] = triangle[i][j]+dp[i-1][j-1];
                else
                    dp[i][j] = min(triangle[i][j]+dp[i-1][j],triangle[i][j]+dp[i-1][j-1]);
            }
        }
        int ans = 9999999;
        for(int i=0;i<triangle[len-1].size();i++)
        {
            ans = min(ans,dp[len-1][i]);
        }
        return ans;
        
    }
    
  

 

LeetCode 120 Triangle

标签:number   class   ext   this   pat   bsp   desc   cto   lse   

原文地址:https://www.cnblogs.com/dacc123/p/9315898.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!