码迷,mamicode.com
首页 > 其他好文 > 详细

欧拉函数

时间:2018-07-16 14:13:08      阅读:417      评论:0      收藏:0      [点我收藏+]

标签:str   不同的   函数   i++   div   abs   sig   正整数   ret   

一、概念:

  在数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1)。

  例如φ(8)=4,因为1,3,5,7均和8互质。

  欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数.

  对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1).

 (初学者一定注意:此处的欧拉函数与图论中的欧拉回路不同)

对于互质的理解:

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。 

互质数具有以下定理:
(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;
(2)多个数的若干个最大公因数只有1的正整数,叫做互质数;
(3)两个不同的质数,为互质数;
(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;
(5)任何相邻的两个数互质;(必为一奇一偶)
(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。
 

二、通式:

   技术分享图片

  其中p1, p2……pn为x的所有质因数,x是不为0的整数。

       φ(1) = 1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如 12 = 2*2*3 那么      φ(12) = 12 * (1-1/2) * (1-1/3)=4  )

       若 n = p^k  (  p为 质数 ),则 φ(n) = p^k-p^(k-1) = (p-1)p^(k-1),( 除 p 的倍数外,其他数均为 p 的互质数 )。

       若n = p( p 为质数),则  φ(n) = p-p^(1-1) = p-1。

三、性质:

(1)   p^k型欧拉函数:

若N是质数p(即N=p), φ(n)= φ(p)=p-p^(k-1)=p-1。

若N是质数p的k次幂(即N=p^k),φ(n)=p^k-p^(k-1)=(p-1)p^(k-1)。

(2)mn型欧拉函数

设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值。若m,n互质,φ(mn)=(m-1)(n-1)=φ(m)φ(n)。

(3)特殊性质:

若n为奇数时,φ(2n)=φ(n)。

对于任何两个互质 的正整数a,n(n>2)有:a^φ(n)=1 mod n (恒等于)此公式即 欧拉定理

当n=p 且 a与素数p互质(即:gcd(a,p)=1)则上式有: a^(p-1)=1 mod n (恒等于)此公式即 费马小定理

四、模板

1.直接求小于或等于n,且与n互质的个数:

 

 1 int  eular(int n)
 2 {
 3     int i,ret=n;
 4     for(i=2; i<=sqrt(n); i++)
 5     {
 6         if(n%i==0)
 7         {
 8             ret=ret/i*(i-1);
 9             while(n%i==0) n/=i;
10         }
11     }
12     if(n>1) ret=ret/n*(n-1);
13     return ret;
14 }

 

2.筛选模板:求[1,n]之间每个数的质因数的个数

 

 1 #define size 1000001
 2 int euler[size];
 3 void Init()
 4 {
 5     euler[1]=1;
 6     for(int i=2; i<size; i++)
 7         if(!euler[i])
 8             for(int j=i; j<size; j+=i)
 9             {
10                 if(!euler[j])
11                     euler[j]=j;
12                 euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出
13             }
14 }

 

欧拉函数

标签:str   不同的   函数   i++   div   abs   sig   正整数   ret   

原文地址:https://www.cnblogs.com/wkfvawl/p/9317125.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!