码迷,mamicode.com
首页 > 其他好文 > 详细

混淆矩阵

时间:2018-07-17 22:13:52      阅读:128      评论:0      收藏:0      [点我收藏+]

标签:strong   好的   bubuko   参考   asc   data   matrix   actual   line   

混淆矩阵(Confusion Matrix)

技术分享图片

混淆矩阵是一个列表,里面包含了实际值和判断值的情况。下图是信息更加丰富的一张混淆矩阵图:

技术分享图片

作为良好的学习模型,TN和TP值是高的,FP和FN值=0;但是很多场景下FP和FN都不是0,那么怎么评价个分类学习的效果(performance)呢?

Accuracy:全准率

(TP+TN)/total = (100+50)/165 = 0.91

Misclassification Rate:差错率

(FP+FN)/total = (10+5)/165 = 0.09,其实A+M=1(互补)

True Positive Rate(TPR):查全率(Recall),对于实际是yes的case,识别出来的占所有的yes的比重

TP/actual yes = 100/105 = 0.95

False Positive Rate(FPR):对于false的case,未识别出来的概率

FP/actual no = 10/60 = 0.17

Specificity:特异性,对于false的case,识别出来的概率

TN/actual no = 50/60 = 0.83

注意,和上面的FPR互补

Precision:准确率,对于yes的case,识别出来概率

TP/predicted yes = 100/110 = 0.91

 

参考

https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/

混淆矩阵

标签:strong   好的   bubuko   参考   asc   data   matrix   actual   line   

原文地址:https://www.cnblogs.com/xiashiwendao/p/9326191.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!