码迷,mamicode.com
首页 > 其他好文 > 详细

Spark Streaming 读取 Kafka 数据的两种方式

时间:2018-07-20 11:36:06      阅读:155      评论:0      收藏:0      [点我收藏+]

标签:acl   str   streaming   input   utils   1.3   top   存储   配置信息   

在Spark1.3之前,默认的Spark接收Kafka数据的方式是基于Receiver的,在这之后的版本里,推出了Direct Approach,现在整理一下两种方式的异同。

1. Receiver-based Approach

val kafkaStream = KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-topic,partitions] )

 2. Direct Approach (No Receivers)

 val directKafkaStream = KafkaUtils.createDirectStream[

源码实现

1、 KafkaUtils.createStream

首先从源码层面来看,其主要调用栈顺序:

 KafkaUtils.createStream---KafkaInputDStream--KafkaReceiver

  1. 创建createStream,Receiver被调起执行
  2. 连接ZooKeeper,读取相应的Consumer、Topic配置信息等
  3. 通过consumerConnector连接到Kafka集群,收取指定topic的数据
  4. 创建KafkaMessageHandler线程池来对数据进行处理,通过ReceiverInputDStream中的方法,将数据转换成BlockRDD,供后续计算

2、 KafkaUtils.createDirectStream

主要调用栈顺序:

KafkaUtils.createDirectStream—> new DirectKafkaInputDStream

执行流程如下:

  1. 实例化KafkaCluster,根据用户配置的Kafka参数,连接Kafka集群
  2. 通过Kafka API读取Topic中每个Partition最后一次读的Offset
  3. 接收成功的数据,直接转换成KafkaRDD,供后续计算

Spark Streaming 读取 Kafka 数据的两种方式

标签:acl   str   streaming   input   utils   1.3   top   存储   配置信息   

原文地址:https://www.cnblogs.com/geek-sharing/p/9339681.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!