标签:ring ups blank get operation i++ 操作 告诉 pst
nnn 个数, qqq 次操作
操作0 x y
把 AxA_xAx? 修改为 yyy
操作1 l r
询问区间 [l,r][l, r][l,r] 的最大子段和
You are given a sequence A of N (N <= 50000) integers between -10000 and 10000. On this sequence you have to apply M (M <= 50000) operations:
modify the i-th element in the sequence or for given x y print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.
输入格式:
The first line of input contains an integer N. The following line contains N integers, representing the sequence A1..AN.
The third line contains an integer M. The next M lines contain the operations in following form:
0 x y: modify Ax into y (|y|<=10000).
1 x y: print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.
输出格式:
For each query, print an integer as the problem required.
这道题与GSS1很像(没做过GSS1的点这里)
但这个题怎么办呢?
大家应该记得,我做GSS1时,并没有建树这个步骤
而是直接将原始节点都变为-inf,然后通过单点修改的方式建树
那么GSS3就很简单了
我们不需要动修改函数(因为都是单点)
直接在循环中引用即可(我才不会告诉你我是先写的GSS3)
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #define rii register int i #define rij register int j #define inf 1073741824 #define rs 65536 using namespace std; struct nod{ int lm,rm,maxn,sum; }x[6000005]; int n,q,cz,x1,y1; void add(int wz,int l,int r,int val,int bh) { if(l==r&&l==wz) { x[bh].maxn=val; x[bh].lm=val; x[bh].rm=val; x[bh].sum=val; return; } int ltt=(l+r)/2; if(wz<=ltt) { add(wz,l,ltt,val,bh*2); } else { add(wz,ltt+1,r,val,bh*2+1); } x[bh].sum=x[bh*2].sum+x[bh*2+1].sum; x[bh].lm=max(x[bh*2].lm,x[bh*2].sum+x[bh*2+1].lm); x[bh].rm=max(x[bh*2+1].rm,x[bh*2+1].sum+x[bh*2].rm); x[bh].maxn=max(x[bh*2].maxn,max(x[bh*2+1].maxn,x[bh*2].rm+x[bh*2+1].lm)); } nod query(int l,int r,int nl,int nr,int bh) { nod an,bn; if(l<nl) { l=nl; } if(r>nr) { r=nr; } if(nl==l&&nr==r) { an=x[bh]; return an; } int ltt=(nl+nr)/2; if(l<=ltt&&r<=ltt) { return an=query(l,r,nl,ltt,bh*2); } if(r>ltt&&l>ltt) { return bn=query(l,r,ltt+1,nr,bh*2+1); } else { an=query(l,r,nl,ltt,bh*2); bn=query(l,r,ltt+1,nr,bh*2+1); an.maxn=max(an.maxn,max(bn.maxn,an.rm+bn.lm)); an.lm=max(an.lm,an.sum+bn.lm); an.rm=max(bn.rm,bn.sum+an.rm); an.sum=an.sum+bn.sum; return an; } } int main() { // freopen("brs.in","r",stdin); // freopen("brs.out","w",stdout); for(rii=1;i<=150005;i++) { x[i].lm=-inf; x[i].rm=-inf; x[i].maxn=-inf; } scanf("%d",&n); for(rii=1;i<=n;i++) { int ltt; scanf("%d",<t); add(i,1,rs,ltt,1); } scanf("%d",&q); for(rii=1;i<=q;i++) { scanf("%d%d%d",&cz,&x1,&y1); if(cz==1) { nod ans=query(x1,y1,1,rs,1); printf("%d\n",ans.maxn); } else { add(x1,1,rs,y1,1); } } }
SP1716 GSS3 - Can you answer these queries III(单点修改,区间最大子段和)
标签:ring ups blank get operation i++ 操作 告诉 pst
原文地址:https://www.cnblogs.com/ztz11/p/9343435.html