标签:约数 return 怎么办 多少 style 模的逆元 为什么 之间 exgcd
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。
基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。
递归实现:
1 int gcd(int a,int b) 2 { 3 if(b==0) 4 return a; 5 return 6 gcd(b,a%b); 7 }
优化
1 int gcd(int a,int b) 2 { 3 if(b==0) 4 return a; 5 return 6 gcd(b,a%b); 7 }
迭代实现
1 int Gcd(int a, int b) 2 { 3 while(b != 0) 4 { 5 int r = b; 6 b = a % b; 7 a = r; 8 } 9 return a; 10 }
基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd
当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?
假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?
我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:
gcd = b*x1 + (a-(a/b)*b)*y1
= b*x1 + a*y1 – (a/b)*b*y1
= a*y1 + b*(x1 – a/b*y1)
对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?
这里:
x = y1
y = x1 – a/b*y1
以上就是扩展欧几里德算法的全部过程,依然用递归写:
1 int exgcd(int a,int b,int &x,int &y) 2 { 3 if(b==0) 4 { 5 x=1; 6 y=0; 7 return a; 8 } 9 int ans=exgcd(b,a%b,x,y); 10 int t=x; 11 x=y; 12 y=t-a/b*y; 13 return ans; 14 }
这就是理论部分,欧几里德算法部分我们好像只能用来求解最大公约数,但是扩展欧几里德算法就不同了,我们既可以求出最大公约数,还可以顺带求解出使得:
a*x + b*y = gcd 的通解 x 和 y
扩展欧几里德算法的应用主要有以下三方面:
(1)求解不定方程;
(2)求解模线性方程(线性同余方程);
(3)求解模的逆元;
其中扩展欧几里得算法一个重要的应用在求解形如 a*x +b*y = c 的特解,比如一个数对于另一个数的乘法逆元
什么叫乘法逆元?
这里,我们称 x 是 a 关于 m 的乘法逆元
这怎么求?这里我们利用扩展欧几里得算法,等价为: a*x + m*y = 1
我们发现当gcd(a , m) != 1 的时候是没有解的,这也是 a*x + b*y = c 有解的充要条件: c % gcd(a , b) == 0
一般,我们能够找到无数组解满足条件,但是一般是让你求解出最小的那组解,怎么做?我们求解出来了一个特殊的解 x0 那么,我们用 x0 % m其实就得到了最小的解了。为什么?
可以这样思考:
x 的通解不是 x0 + m*t 吗?
那么,也就是说, a 关于 m 的逆元是一个关于 m 同余的,那么根据最小整数原理,一定存在一个最小的正整数,它是 a 关于m 的逆元,而最小的肯定是在(0 , m)之间的,而且只有一个,这就好解释了。
但是,由于问题的特殊性,有时候我们得到的特解 x0 是一个负数,还有的时候我们的 m 也是一个负数这怎么办?
当 m 是负数的时候,我们取 m 的绝对值就行了,当 x0 是负数的时候,x0% m 的结果仍然是负数(在计算机计算的结果上是这样的,虽然定义的时候不是这样的),这时候,我们仍然让 x0 对abs(m) 取模,然后结果再加上abs(m) 就行了,于是,我们不难写出下面的代码求解一个数 a 对于另一个数 m 的乘法逆元:
1 int cal(int a,int m) 2 { 3 int x,y,ans,gcd; 4 gcd=exgcd(a,m,x,y); 5 if(1%gcd!=0)///无解 6 { 7 return -1; 8 } 9 x=x*1/gcd; 10 m=abs(m); 11 ans=x%m; 12 if(ans<=0) 13 { 14 ans=ans+m; 15 } 16 return ans; 17 }
标签:约数 return 怎么办 多少 style 模的逆元 为什么 之间 exgcd
原文地址:https://www.cnblogs.com/wkfvawl/p/9350867.html