标签:fusion generate rnn sam class upd char variable argument
function out1 = plotroc(varargin) %PLOTROC Plot receiver operating characteristic. % % <a href="matlab:doc plotroc">plotroc</a>(targets,outputs) takes target data in 1-of-N form (each column % vector is all zeros with a single 1 indicating the class number), and % output data and generates a receiver operating characteristic plot. % % The best classifications will show the receiver operating line hugging % the left and top sides of the plots axis. % % <a href="matlab:doc plotroc">plotroc</a>(targets,1,outputs1,‘name1‘,targets2,outputs2,names2,...) % generates a variable number of confusion plots in one figure. % % Here a pattern recognition network is trained and its accuracy plotted: % % [x,t] = <a href="matlab:doc simpleclass_dataset">simpleclass_dataset</a>; % net = <a href="matlab:doc patternnet">patternnet</a>(10); % net = <a href="matlab:doc train">train</a>(net,x,t); % y = net(x); % <a href="matlab:doc plotroc">plotroc</a>(t,y); % % See also roc, plotconfusion, ploterrhist, plotregression. % Copyright 2010-2012 The MathWorks, Inc. %% ======================================================= % BOILERPLATE_START % This code is the same for all Transfer Functions. persistent INFO; if isempty(INFO), INFO = get_info; end if nargin == 0 fig = nnplots.find_training_plot(mfilename); if nargout > 0 out1 = fig; elseif ~isempty(fig) figure(fig); end return; end in1 = varargin{1}; if ischar(in1) switch in1 case ‘info‘, out1 = INFO; case ‘suitable‘ [args,param] = nnparam.extract_param(varargin,INFO.defaultParam); [net,tr,signals] = deal(args{2:end}); update_args = standard_args(net,tr,signals); unsuitable = unsuitable_to_plot(param,update_args{:}); if nargout > 0 out1 = unsuitable; elseif ~isempty(unsuitable) for i=1:length(unsuitable) disp(unsuitable{i}); end end case ‘training_suitable‘ [net,tr,signals,param] = deal(varargin{2:end}); update_args = training_args(net,tr,signals,param); unsuitable = unsuitable_to_plot(param,update_args{:}); if nargout > 0 out1 = unsuitable; elseif ~isempty(unsuitable) for i=1:length(unsuitable) disp(unsuitable{i}); end end case ‘training‘ [net,tr,signals,param] = deal(varargin{2:end}); update_args = training_args(net,tr,signals); fig = nnplots.find_training_plot(mfilename); if isempty(fig) fig = figure(‘visible‘,‘off‘,‘tag‘,[‘TRAINING_‘ upper(mfilename)]); plotData = setup_figure(fig,INFO,true); else plotData = get(fig,‘userdata‘); end set_busy(fig); unsuitable = unsuitable_to_plot(param,update_args{:}); if isempty(unsuitable) set(0,‘CurrentFigure‘,fig); plotData = update_plot(param,fig,plotData,update_args{:}); update_training_title(fig,INFO,tr) nnplots.enable_plot(plotData); else nnplots.disable_plot(plotData,unsuitable); end fig = unset_busy(fig,plotData); if nargout > 0, out1 = fig; end case ‘close_request‘ fig = nnplots.find_training_plot(mfilename); if ~isempty(fig),close_request(fig); end case ‘check_param‘ out1 = ‘‘; % TODO otherwise, try out1 = eval([‘INFO.‘ in1]); catch me, nnerr.throw([‘Unrecognized first argument: ‘‘‘ in1 ‘‘‘‘]) end end else [args,param] = nnparam.extract_param(varargin,INFO.defaultParam); update_args = standard_args(args{:}); if ischar(update_args) nnerr.throw(update_args); end [plotData,fig] = setup_figure([],INFO,false); unsuitable = unsuitable_to_plot(param,update_args{:}); if isempty(unsuitable) plotData = update_plot(param,fig,plotData,update_args{:}); nnplots.enable_plot(plotData); else nnplots.disable_plot(plotData,unsuitable); end set(fig,‘visible‘,‘on‘); drawnow; if nargout > 0, out1 = fig; end end end function set_busy(fig) set(fig,‘userdata‘,‘BUSY‘); end function close_request(fig) ud = get(fig,‘userdata‘); if ischar(ud) set(fig,‘userdata‘,‘CLOSE‘); else delete(fig); end drawnow; end function fig = unset_busy(fig,plotData) ud = get(fig,‘userdata‘); if ischar(ud) && strcmp(ud,‘CLOSE‘) delete(fig); fig = []; else set(fig,‘userdata‘,plotData); end drawnow; end function tag = new_tag tagnum = 1; while true tag = [upper(mfilename) num2str(tagnum)]; fig = nnplots.find_plot(tag); if isempty(fig), return; end tagnum = tagnum+1; end end function [plotData,fig] = setup_figure(fig,info,isTraining) PTFS = nnplots.title_font_size; if isempty(fig) fig = get(0,‘CurrentFigure‘); if isempty(fig) || strcmp(get(fig,‘nextplot‘),‘new‘) if isTraining tag = [‘TRAINING_‘ upper(mfilename)]; else tag = new_tag; end fig = figure(‘visible‘,‘off‘,‘tag‘,tag); if isTraining set(fig,‘CloseRequestFcn‘,[mfilename ‘(‘‘close_request‘‘)‘]); end else clf(fig); set(fig,‘tag‘,‘‘); set(fig,‘tag‘,new_tag); end end set(0,‘CurrentFigure‘,fig); ws = warning(‘off‘,‘MATLAB:Figure:SetPosition‘); plotData = setup_plot(fig); warning(ws); if isTraining set(fig,‘nextplot‘,‘new‘); update_training_title(fig,info,[]); else set(fig,‘nextplot‘,‘replace‘); set(fig,‘name‘,[info.name ‘ (‘ mfilename ‘)‘]); end set(fig,‘NumberTitle‘,‘off‘,‘toolbar‘,‘none‘); plotData.CONTROL.text = uicontrol(‘parent‘,fig,‘style‘,‘text‘,... ‘units‘,‘normalized‘,‘position‘,[0 0 1 1],‘fontsize‘,PTFS,... ‘fontweight‘,‘bold‘,‘foreground‘,[0.7 0 0]); set(fig,‘userdata‘,plotData); end function update_training_title(fig,info,tr) if isempty(tr) epochs = ‘0‘; stop = ‘‘; else epochs = num2str(tr.num_epochs); if isempty(tr.stop) stop = ‘‘; else stop = [‘, ‘ tr.stop]; end end set(fig,‘name‘,[‘Neural Network Training ‘ ... info.name ‘ (‘ mfilename ‘), Epoch ‘ epochs stop]); end % BOILERPLATE_END %% ======================================================= function info = get_info info = nnfcnPlot(mfilename,‘Receiver Operating Characteristic‘,7.0,[]); end function args = training_args(net,tr,data) yall = nncalc.y(net,data.X,data.Xi,data.Ai); y = {yall}; t = {gmultiply(data.train.mask,data.T)}; names = {‘Training‘}; if ~isempty(data.val.enabled) y = [y {yall}]; t = [t {gmultiply(data.val.mask,data.T)}]; names = [names {‘Validation‘}]; end if ~isempty(data.test.enabled) y = [y {yall}]; t = [t {gmultiply(data.test.mask,data.T)}]; names = [names {‘Test‘}]; end if length(t) >= 2 t = [t {data.T}]; y = [y {yall}]; names = [names {‘All‘}]; end args = {t y names}; end function args = standard_args(varargin) if nargin < 2 args = ‘Not enough input arguments.‘; elseif (nargin > 2) && (rem(nargin,3) ~= 0) args = ‘Incorrect number of input arguments.‘; elseif nargin == 2 % (t,y) t = { nntype.data(‘format‘,varargin{1}) }; y = { nntype.data(‘format‘,varargin{2}) }; names = {‘‘}; args = {t y names}; else % (t1,y1,name1,...) % TODO - Check data is consistent count = nargin/3; t = cell(1,count); y = cell(1,count); names = cell(1,count); for i=1:count t{i} = nntype.data(‘format‘,varargin{i*3-2}); y{i} = nntype.data(‘format‘,varargin{i*3-1}); names{i} = varargin{i*3}; end param.outputIndex = 1; args = {t y names}; end end function plotData = setup_plot(fig) plotData.numSignals = 0; end function fail = unsuitable_to_plot(param,t,y,names) fail = ‘‘; t1 = t{1}; if numsamples(t1) == 0 fail = ‘The target data has no samples to plot.‘; elseif numtimesteps(t1) == 0 fail = ‘The target data has no timesteps to plot.‘; elseif sum(numelements(t1)) == 0 fail = ‘The target data has no elements to plot.‘; end end function plotData = update_plot(param,fig,plotData,tt,yy,names) t = tt{1}; numSignals = length(names); numClasses = size(t{1},1); % Rebuild figure if (plotData.numSignals ~= numSignals) || (plotData.numClasses ~= numClasses) set(fig,‘nextplot‘,‘replace‘); plotData.numSignals = numSignals; plotData.numClasses = numClasses; plotData.axes = zeros(1,numSignals); colors = nncolor.ncolors(numClasses); plotcols = ceil(sqrt(numSignals)); plotrows = ceil(numSignals/plotcols); for plotrow=1:plotrows for plotcol=1:plotcols i = (plotrow-1)*plotcols+plotcol; if (i<=numSignals) a = subplot(plotrows,plotcols,i); cla(a) set(a,‘dataaspectratio‘,[1 1 1]); set(a,‘xlim‘,[0 1]); set(a,‘ylim‘,[0 1]); hold on axisdata = []; axisdata.lines = zeros(1,numClasses); for j=1:numClasses c = colors(j,:); line([0 1],[0 1],‘linewidth‘,2,‘color‘,[1 1 1]*0.8); axisdata.lines(j) = line([0 1],[0 1],‘linewidth‘,2,‘Color‘,c); end if ~isempty(names{1}) titleStr = [names{i} ‘ ROC‘]; else titleStr = ‘ROC‘; end title(a,titleStr); xlabel(a,‘False Positive Rate‘); ylabel(a,‘True Positive Rate‘); plotData.axes(i) = a; set(a,‘userdata‘,axisdata); if (i==1) && (numClasses > 1) labels = cell(1,numClasses); for ii=1:numClasses, labels{ii} = [‘Class ‘ num2str(ii)]; end legend(axisdata.lines,labels{:}) end end end end screenSize = get(0,‘ScreenSize‘); screenSize = screenSize(3:4); windowSize = 700 * [1 (plotrows/plotcols)]; pos = [(screenSize-windowSize)/2 windowSize]; set(fig,‘position‘,pos); end % Update details for i=1:numSignals y = yy{i}; if iscell(y), y = cell2mat(y); end t = tt{i}; if iscell(t), t = cell2mat(t); end [tpr,fpr] = roc(t,y); if ~iscell(tpr) tpr = {tpr}; fpr = {fpr}; end a = plotData.axes(i); axisdata = get(a,‘userdata‘); for j=1:numClasses set(axisdata.lines(j),‘xdata‘,[0 fpr{j} 1],‘ydata‘,[0 tpr{j} 1]); end end end
标签:fusion generate rnn sam class upd char variable argument
原文地址:https://www.cnblogs.com/sword-/p/9357231.html