码迷,mamicode.com
首页 > 其他好文 > 详细

KMP算法 - 求最小覆盖子串

时间:2014-10-02 23:54:43      阅读:250      评论:0      收藏:0      [点我收藏+]

标签:des   style   blog   http   color   io   os   ar   for   

 

KMP与最小覆盖子串

最小覆盖子串:对于某个字符串s,它的最小覆盖子串指的是长度最小的子串p,p满足通过自身的多次连接得到q,最后能够使s成为q的子串。

比如:

对于s="abcab",它的最小覆盖子串p="abc",因为p通过在它后面再接上一个p(即重叠0个字符),可以得到q="abcabc",此时s是q的子串。

对于s="ababab",它的最小覆盖子串为p="ab"。

根据KMP算法的next数组的定义,设字符串s的长度为n,则next[n] = next[n - 1],n-1为s的最后一位。

next[n]表明s[0,1,2,...,next[n]-1] == s[n-next[n],...,n-1],设这两段分别为s1和s2。

若s1和s2的长度之和小于s的长度,则说明s1和s2分别为不重叠的前缀和后缀,则最小覆盖子串必为s截去s2之后得到的前缀。

若s1和s2的长度之和大于等于s的长度,则最小覆盖子串也必为s截去s2之后得到的前缀。

以上两种情况都可以推出这个结论:最小覆盖子串是s的前缀,它的长度为n-next[n]。

 

         我对KMP的一些理解(lyp点拨的):pre[i](或next[i])的实质是串str[1..i]的最长且小于i的“相等前、后缀”分别为str[1..pre[i]](前缀)与str[(i-pre[i]+1)..i](后缀),通俗讲就是:使str[1..i]前k个字母与后k个字母相等的最大k值。

KMP算法详解可见:http://blog.csdn.net/fjsd155/article/details/6864233

另外一个结论:

最小覆盖子串(串尾多一小段时,用前缀覆盖)长度为n-next[n](n-pre[n]),n为串长。

证明分两部分:

1-长为n-next[n]的前缀必为覆盖子串。

当next[n]<n-next[n]时,如图a,长为next[n]的前缀A与长为next[n]的后缀B相等,故长为n-next[n]的前缀C必覆盖后缀B;

bubuko.com,布布扣

当next[n]>n-next[n]时,如图b,将原串X向后移n-next[n]个单位得到Y串,根据next的定义,知长为next[n]的后缀串A与长为前缀串B相等,X串中的长为n-next[n]的前缀C与Y串中的前缀D相等,而X串中的串E又与Y串中的D相等……可见X串中的长为n-next[n]的前缀C可覆盖全串。

bubuko.com,布布扣

2-长为n-next[n]的前缀是最短的。

如图c,串A是长为n-next[n]的前缀,串B是长为next[n]的后缀,假设存在长度小于n-next[n]的前缀C能覆盖全串,则将原串X截去前面一段C,得到新串Y,则Y必与原串长度大于next[n]的前缀相等,与next数组的定义(使str[1..i]前k个字母与后k个字母相等的最大k值。)矛盾。得证!有人问,为什么Y与原串长大于next[n]的前缀相等?由假设知原串的构成必为CCC……E(E为C的前缀),串Y的构成必为CC……E(比原串少一个C),懂了吧!

bubuko.com,布布扣

 

最后得出结论:总长度-next[n].

 

// Memory   Time
// 1347K     0MS
// by : Snarl_jsb
// 2014-10-02-21.08
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<string>
#include<climits>
#include<cmath>
#define N 1000010
#define LL long long
using namespace std;

string str;
vector<int> next;
void GetNext()
{
    int len=str.size();
    next.push_back(0);
    int k=0;
    for(int i=1;i<len;++i)
    {
        if(k!=0&&str[i]!=str[k])
            k=next[k-1];
        if(str[i]==str[k])
            k++;
        next.push_back(k);
    }
}
int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
//    freopen("C:\\Users\\ASUS\\Desktop\\cin.cpp","r",stdin);
//    freopen("C:\\Users\\ASUS\\Desktop\\cout.cpp","w",stdout);
    while(cin>>str)
    {
        next.clear();
        int len=str.size();
        GetNext();
//        for(int i=0;i<len;++i)
//        {
//            cout<<len-next[i]<<endl;
//        }
        cout<<"最小覆盖子串为:"<<len-next[len-1]<<endl;
    }
    return 0;
}

  

KMP算法 - 求最小覆盖子串

标签:des   style   blog   http   color   io   os   ar   for   

原文地址:http://www.cnblogs.com/acmer-jsb/p/4004520.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!