标签:进程 模块 控制线 有一个 stop imp 内核 自动 检测
本节导读:
一 协程介绍
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、
需要强调的是:
python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程内控制协程的切换
优点如下:
协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结:
二 greenlet模块
如果我们在单个线程内有20个任务,要想实现在多个任务之间切换,使用yield生成器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换
#安装:pip3 install greenlet from greenlet import greenlet def eat(name): print(‘%s eat 1‘ %name) g2.switch(‘egon‘) print(‘%s eat 2‘ %name) g2.switch() def play(name): print(‘%s play 1‘ %name) g1.switch() print(‘%s play 2‘ %name) g1=greenlet(eat) g2=greenlet(play) g1.switch(‘egon‘)#可以在第一次switch时传入参数,以后都不需要 #单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度 #顺序执行 import time def f1(): res=1 for i in range(100000000): res+=i def f2(): res=1 for i in range(100000000): res*=i start=time.time() f1() f2() stop=time.time() print(‘run time is %s‘ %(stop-start)) #10.985628366470337 #切换 from greenlet import greenlet import time def f1(): res=1 for i in range(100000000): res+=i g2.switch() def f2(): res=1 for i in range(100000000): res*=i g1.switch() start=time.time() g1=greenlet(f1) g2=greenlet(f2) g1.switch() stop=time.time() print(‘run time is %s‘ %(stop-start)) # 52.763017892837524
greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。
单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。
三 gevent模块
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
#用法 g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2=gevent.spawn(func2) g1.join() #等待g1结束 g2.join() #等待g2结束 #或者上述两步合作一步:gevent.joinall([g1,g2]) g1.value#拿到func1的返回值
遇到IO阻塞时会自动切换任务
import gevent def eat(name): print(‘%s eat 1‘ %name) gevent.sleep(2) print(‘%s eat 2‘ %name) def play(name): print(‘%s play 1‘ %name) gevent.sleep(1) print(‘%s play 2‘ %name) g1=gevent.spawn(eat,‘egon‘) g2=gevent.spawn(play,name=‘egon‘) g1.join() g2.join() #或者gevent.joinall([g1,g2]) print(‘主‘)
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,
而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了
from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前
或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
from gevent import monkey;monkey.patch_all() import gevent import time def eat(): print(‘eat food 1‘) time.sleep(2) print(‘eat food 2‘) def play(): print(‘play 1‘) time.sleep(1) print(‘play 2‘) g1=gevent.spawn(eat) g2=gevent.spawn(play_phone) gevent.joinall([g1,g2]) print(‘主‘)
我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程
标签:进程 模块 控制线 有一个 stop imp 内核 自动 检测
原文地址:https://www.cnblogs.com/leiyiming/p/9367710.html