码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj2306: [Ctsc2011]幸福路径(倍增+Floyed 逼近答案)

时间:2018-07-26 21:22:15      阅读:176      评论:0      收藏:0      [点我收藏+]

标签:zoj   logs   整数   floyed   空格   size   正整数   sha   play   

www.cnblogs.com/shaokele/


bzoj2306: [Ctsc2011]幸福路径

  Time Limit: 10 Sec
  Memory Limit: 256 MB

Description

  有向图 G有n个顶点 1, 2, …, n,点i 的权值为 w(i)。现在有一只蚂蚁,从给定的起点 v0出发,沿着图 G 的边爬行。开始时,它的体力为 1。每爬过一条边,它的体力都会下降为原来的 ρ 倍,其中ρ 是一个给定的小于1的正常数。而蚂蚁爬到某个顶点时的幸福度,是它当时的体力与该点权值的乘积。
  我们把蚂蚁在爬行路径上幸福度的总和记为 H。很显然,对于不同的爬行路径,H 的值也可能不同。小 Z 对 H 值的最大可能值很感兴趣,你能帮助他计算吗?注意,蚂蚁爬行的路径长度可能是无穷的。
 

Input

  每一行中两个数之间用一个空格隔开。
  输入文件第一行包含两个正整数 n, m,分别表示 G 中顶点的个数和边的条数。
  第二行包含 n个非负实数,依次表示 n个顶点权值 w(1), w(2), …, w(n)。
  第三行包含一个正整数 v0,表示给定的起点。
  第四行包含一个实数 ρ,表示给定的小于 1的正常数。
  接下来 m行,每行两个正整数 x, y,表示<x, y>是G的一条有向边。可能有自环,但不会有重边。
 

Output

   仅包含一个实数,即 H值的最大可能值,四舍五入到小数点后一位。
 

Sample Input

  5 5
  
  10.0 8.0 8.0 8.0 15.0
  
  1
  
  0.5
  
  1 2
  
  2 3
  
  3 4
  
  4 2
  
  4 5
  

Sample Output

  18.0
  

HINT

  对于 100%的数据, n ≤ 100, m ≤ 1000, ρ ≤ 1 – 10^-6, w(i) ≤ 100 (i = 1, 2, …, n)。
  

题目地址:  bzoj2306: [Ctsc2011]幸福路径

题目大意:

  给定?张有向图,每个点有个权值,蚂蚁从某个点开始,初始体?为1,每经过?条边,体?会变为原来的p(0<p<1)倍,每爬到?个点,获得的幸福度为该点的权值乘上体?。求蚂蚁幸福度的最?值,保留?位?数。

题解:

  考虑到体力衰减很快,所以我们只要做有限次数的如下 \(dp\) 即可
   \(f[t][i][j]\) 表示? \(2^t\) 步,从 \(i\) ?到 \(j\) 获得的最?幸福度。
  \[f[t][i][j]=max(f[t-1][i][k]+f[t-1][k][j]*p^{2^{t-1}})\]
   \(t\) ?够?时, \(f\) 得到的就近似为最?的幸福值。
  或者说当 \(p<eps\) 时,得到的就近似为最?的幸福值。


AC代码

#include <cstdio> 
#include <cstring>
#include <algorithm>
using namespace std;
const int N=105;
int n,m,S;
double p,ans=0,val[N],f[N][N],g[N][N];
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%lf",&val[i]);
    scanf("%d",&S);
    scanf("%lf",&p);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i!=j)f[i][j]=-1e100;
    while(m--){
        int u,v;
        scanf("%d%d",&u,&v);
        f[u][v]=val[v]*p;
    }
    for(;p>1e-10;p*=p){
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                g[i][j]=-1e100;
        for(int k=1;k<=n;k++)
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                    g[i][j]=max(g[i][j],f[i][k]+f[k][j]*p);
        memcpy(f,g,sizeof(g));
    }
    for(int i=1;i<=n;i++)
        ans=max(ans,f[S][i]);
    printf("%.1f\n",ans+val[S]);
    return 0;
}

bzoj2306: [Ctsc2011]幸福路径(倍增+Floyed 逼近答案)

标签:zoj   logs   整数   floyed   空格   size   正整数   sha   play   

原文地址:https://www.cnblogs.com/shaokele/p/9374051.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!