Problem Description
2-3 tree is an elegant data structure invented by John Hopcroft. It is designed to implement the same functionality as the binary search tree. 2-3 tree is an ordered rooted tree with the following properties:
- the root and each internal vertex have either 2 or 3 children;
- the distance from the root to any leaf of the tree is the same.
The only exception is the tree that contains exactly one vertex — in this case the root of the tree is the only vertex, and it is simultaneously a leaf, i.e. has no children. The main idea of the described properties
is that the tree with l leaves has the height O(log l).
Given the number of leaves l there can be several valid 2-3 trees that have l leaves. For example, the picture below shows the two possible 2-3 trees with exactly 6 leaves.
Given l find the number of different 2-3 trees that have l leaves. Since this number can be quite large, output it modulo r.
Input
Output
Sample Input
6 1000000000 7 1000000000
Sample Output
2 3