标签:情况 整数 小数 bsp rac 第三章 nbsp 第二版 大于等于
31 $\left \lfloor x \right \rfloor+\left \lfloor y \right \rfloor+\left \lfloor x+y \right \rfloor=\left \lfloor x+\left \lfloor y \right \rfloor \right \rfloor+\left \lfloor x+y \right \rfloor$
(1)$\left \lfloor y \right \rfloor\leq \frac{1}{2}\left \lfloor 2y \right \rfloor$,可以分别假设$y$是整数,$y$是小数且小数部分小于$0.5$以及小数部分大于等于$0.5$三种情况讨论,可以得到这个式子总是成立;
(2)$y\leq \frac{1}{2}\left \lfloor 2y \right \rfloor+\frac{1}{2}$ 这个的证明也可以像上面一样分三种情况讨论
所以$\left \lfloor x+\left \lfloor y \right \rfloor \right \rfloor+\left \lfloor x+y \right \rfloor\leq \left \lfloor x+\frac{1}{2}\left \lfloor 2y \right \rfloor \right \rfloor+\left \lfloor x+\frac{1}{2}\left \lfloor 2y \right \rfloor+\frac{1}{2} \right \rfloor$
此时,令$p=\left \lfloor 2y \right \rfloor$。可以看出,不管$p$是奇数还是偶数,都有$\left \lfloor x+\frac{1}{2}\left \lfloor 2y \right \rfloor \right \rfloor+\left \lfloor x+\frac{1}{2}\left \lfloor 2y \right \rfloor+\frac{1}{2} \right \rfloor=\left \lfloor x \right \rfloor+\left \lfloor x+\frac{1}{2} \right \rfloor+\left \lfloor 2y \right \rfloor$
最后可以发现,同样将$x$像上面一样分三种情况讨论有$\left \lfloor x \right \rfloor+\left \lfloor x+\frac{1}{2} \right \rfloor=\left \lfloor 2x \right \rfloor$
标签:情况 整数 小数 bsp rac 第三章 nbsp 第二版 大于等于
原文地址:https://www.cnblogs.com/jianglangcaijin/p/9379885.html