标签:blog http io os ar for sp div c
http://poj.org/problem?id=2478
http://acm.hdu.edu.cn/showproblem.php?pid=2824
欧拉函数模板裸题,有两种方法求出所有的欧拉函数,一是筛法,而是白书上的筛法。
首先看欧拉函数的性质:
基于素数筛的求欧拉函数的重要依据:
设a是n的质因数
若(n%a == 0 && (n/a)%a == 0) 则 φ(n) = φ(n/a)*a; (性质4的1推出)
若(n%a == 0 && (n/a)%a != 0) 则 φ(n) = φ(n/a)*φ(a)。(性质4的2推出)
素数筛:
poj 2748:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << ‘\t‘; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }
const int N=1000005;
bool isnotprime[N];
int prime[N], phi[N], cnt;
void init() {
phi[1]=1;
for1(i, 2, N-1) {
if(!isnotprime[i]) prime[++cnt]=i, phi[i]=i-1;
for(int j=1; j<=cnt && i*prime[j]<N; ++j) {
isnotprime[i*prime[j]]=1;
if(i%prime[j]==0) { phi[i*prime[j]]=phi[i]*prime[j]; break; }
else phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
}
int main() {
init(); int n;
while(n=getint(), n) {
long long ans=0;
for1(i, 2, n) ans+=phi[i];
printf("%lld\n", ans);
}
return 0;
}
hdu 2824:g++是I64d我也是醉了。。。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << ‘\t‘; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }
const int N=3000015;
bool isnotprime[N];
int prime[N], phi[N], cnt;
void init() {
phi[1]=1;
for1(i, 2, N-1) {
if(!isnotprime[i]) prime[++cnt]=i, phi[i]=i-1;
for(int j=1; j<=cnt && i*prime[j]<=N-1; ++j) {
int p=prime[j];
isnotprime[i*p]=1;
if(i%p==0) { phi[i*p]=phi[i]*p; break; }
else phi[i*p]=phi[i]*phi[p];
}
}
}
int main() {
int l, r; init();
while(~scanf("%d%d", &l, &r)) {
long long ans=0;
for1(i, l, r) ans+=phi[i];
printf("%I64d\n", ans);
}
return 0;
}
还有一种筛法,不需要求素数。。。有待研究。复杂度比前一种多了两个log,是nloglogn的。。。orz。还是用线性的素数筛吧。。
欧拉函数 & 【POJ】2478 Farey Sequence & 【HDU】2824 The Euler function
标签:blog http io os ar for sp div c
原文地址:http://www.cnblogs.com/iwtwiioi/p/4005096.html