码迷,mamicode.com
首页 > 其他好文 > 详细

多项式插值公式

时间:2018-07-30 21:44:39      阅读:188      评论:0      收藏:0      [点我收藏+]

标签:line   公式   isp   inline   display   n+1   math   spl   情况   

拉格朗日插值公式

背公式吧,没什么好说的了。。。
假装\(P\)是一个关于\(x\)\(n\)次多项式,我们已经知道了\(P(i),i\in[0,n]\)的值。
\[P(x)=\sum_{i=0}^n(-1)^{n-i}P(i)\frac{x(x-1)(x-2)...(x-n)}{(n-i)!i!(x-i)}\]

上面这个东西是拉格朗日插值公式的特殊情况。
一般情况下是任意的\(n+1\)个给定的点\(x_i\)以及值\(P(x_i)\)
丢下公式就跑
\[P(x)=\sum_{i=0}^{n}P(x_i)\prod_{j=0,j\ne i}^{n}\frac{x-x_j}{x_i-x_j}\]

多项式插值公式

标签:line   公式   isp   inline   display   n+1   math   spl   情况   

原文地址:https://www.cnblogs.com/cjyyb/p/9392388.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!