码迷,mamicode.com
首页 > 其他好文 > 详细

CVX notes

时间:2018-07-31 23:28:45      阅读:365      评论:0      收藏:0      [点我收藏+]

标签:red   必须   linear   \n   rspec   inf   where   normal   sqrt   

目录

CVX notes


Preliminaries

1. PSD

M is positive semidefinite matrix \(\iff\) all principal submatrices \(P\) of \(M\) are PSD

Note: This follows by considering the quadratic form \(x^T Mx\) and looking at the components of \(x\) corresponding to the defining subset of principal submatrix. The converse is trivially true.

M is PSD \(\iff\) all principal minors are non-negative (所有主子式非负)

将M写成二次型:
\[ x^T M x = \sum_{i,j}M_{ij}x_ix_j \]
于是取 \(x\) 为标准基 \(e_i ~\implies M_{ii} \ge 0 \implies \mathbf{tr}(M) \ge 0\) , 再取\(x\)为零向量只有 i,j两个位置为 1,则
\[ \begin{gathered} x^T M x = M_{ii}M_{jj} - M_{ij}^2 \ge 0 ~~(PSD) \\implies M_{ij} \le \sqrt{M_{ii}M_{jj}} \le \frac{M_{ii} + M_{jj}}{2} \end{gathered} \]


2. Matrix norm

General definition of a norm:技术分享图片

Matrix norm:技术分享图片

  • Frobenius norm: \(\|A\|_F := \sqrt{\langle A,A\rangle_F} = \sqrt{\mathbf{tr}(A^*A)}\)
  • Induced norm: \(\|A\|_p := \sup_\limits{\|x\|_p = 1} \|Ax\|_p\)
  • Nuclear norm: \(\|A\|_{nuclear} := \sum \sigma_i(A)\) (奇异值之和)
  • Spectral norm: \(\|A\|_{spectral} := \lambda_1\) (最大特征值)

Spectrial radius

技术分享图片

技术分享图片


3. Duality

Two ==equivalent== ways to represent a convex set:

  • standard representation: The family of points in the set
  • dual representation: The set of halfspaces containing the set (半平面的交集)

A closed convex set \(S\) is the intersection of all closed halfspaces \(H\) containing it.技术分享图片

技术分享图片

技术分享图片

Polar
Let \(S \subseteq \mathbb{R}^n\) be a convex set containing the origin. The polar of \(S\) is defined as follows
\[ S^{\circ} := \{y ~|~ y^Tx \le 1, ~\forall x \in S\} \]

Note

  • polar is one way of representing the all halfspaces containing a convex set
  • every halfspace \(a^Tx \le b\) with \(b \neq 0\) can be written as a “normalized” inequality \(y^T x \le 1\), by dividing by \(b\)
  • \(S^{\circ}\) can be thought of as the normalized representations of halfspaces containing \(S\)

Properties of the polar:

  1. \(S^{\circ\circ} = S\)
  2. \(S^{\circ}\) is a closed convex set containing the origin
  3. When 0 is in the interior of \(S\), then \(S^{\circ}\) is bounded
  4. When \(S\) is non-convex, \(S^{\circ} = (\mathbf{conv}(S))^{\circ}\), and \(S^{\circ\circ} = \mathbf{conv}(S)\)

技术分享图片

技术分享图片

Polar duality of convex cones技术分享图片

技术分享图片

Notes

  1. \(K^{\circ\circ} = K\)
  2. \(K^{\circ}\) is closed and convex

Conjugation of convex functions
Let \(f: \mathbb{R}^n \mapsto \mathbb{R}\cup\{\infty\}\) be a convex function. The ==conjugation== of \(f\) is
\[ f^*(y) := \sup_\limits{x}(y^Tx - f(x)) \]
技术分享图片

Properties of the conjugate

  1. \(f^{**} = f\)
  2. \(f^*\) is convex (supremum of affine functions of \(y\))

技术分享图片


Convex sets


Convex functions

技术分享图片

  1. affine is convex: \(f(x) = a^T x+b\)

    affine 既凸也凹

  2. 任何_范数_是凸的

    Proof: let \(\pi(x)\) be a norm of \(x\), then技术分享图片

  3. \(f\) is convex \(\iff\) epi(\(f\)) is convex


1. Closed convex

A convex function \(f\) is called closed if its epigraph is a closed set.

  1. \(f\) which is convex and continuous on a closed domain is a closed function. (norms)
  2. all differentiable convex functions are closed with dom\(f = \mathbb{R}^n\).
  3. 当考虑一个凸函数时,通常认为在dom\(f\)外取值为\(\infty\)
  4. Jensen‘s inequality:技术分享图片
  5. Corollary:技术分享图片

    pf: \(f(x) = f(\sum\alpha_i x_i) \le \sum \alpha_i f(x_i) \le \max_\limits{i} f(x_i)\)


2. Level sets

技术分享图片

Note: the convexity of level sets does not characterize convex functions, but quasiconvex functions.

  1. convex \(f\) is closed \(\implies\) all its level sets are closed

Some convex sets

  1. norm ball (\(\{x\in \mathbb{R}^n | \|x\| \le 1\}\)) is convex and closed
  2. 椭球(\(\{x | (x-a)^T Q (x-a) \le r^2\}\)) is convex and closed

    pf: \(x^TQy := \langle x, y \rangle\) 满足内积的三条性质
    • bilinearity
    • symmetry
    • positivity
      上述三条性质 \(\iff\) Q is PSD
  3. \(\epsilon\)-neighborhood: 技术分享图片


3. Operations perserving convexity of functions

  1. stability under taking weighted sums: \(f,g \mapsto \lambda f + \mu g, \; \lambda,\mu \ge 0\)
  2. stability under affine substitutions of the argument: \(x \mapsto Ax+b\) or \(f(x) \mapsto \phi(x) = f(Ax+b)\)
  3. stability under taking pointwise sup: \(\{f_i\}_{i \in \mathcal{I}} \mapsto g(x) := \sup_\limits{i \in \mathcal{I}}f_i(x)\), 凸函数族 \(\{f_i\}_{i \in \mathcal{I}}\) 逐点取上确界而成的函数也是凸的
  4. stability under partial minimization: \(f(x,y)\) jointly convex in \((x,y)\), then \(g(x) = \inf_\limits{y} f(x,y)\) is convex (suppose g is proper, i.e., > -\(\infty\) everywhere and is finite at least at one point)
  5. stability under perspective: \(f(x) \mapsto g(x,t) = tf(x/t), \mathbf{dom}g = \{(x,t) | x/t \in \mathbf{dom}f, t > 0\}\)

4. Detect convexity

Necessary and Sufficient Convexity Condition for smooth function:

  • 一阶可微的光滑函数 \(f\) 是凸的 \(\iff\) \(f‘(x)\) 单调非减
  • 二阶可微的光滑函数 \(f\) 是凸的 \(\iff\) \(f‘‘(x) \ge 0\)

subgradient property is characteristic of convex functions:技术分享图片


5. Subgradient

Examples

  • 技术分享图片
  • 技术分享图片
  • 技术分享图片
  • 技术分享图片

6. Optimality conditions

凸函数的局部最优等价于全局最优。

第一充要条件(凸函数)
\(x^* \in \mathbf{dom}f?\) is the minimizer \(\iff?\) \(0 \in \partial f(x^*)?\)


7. Strong convexity

A differentiable function f is strongly convex if
\[ f(y) \ge f(x) + \nabla f(x)^T(y-x) + \frac{\mu}{2} \|y-x\|^2 \]

Note

  1. \(f\) is not necessarily differentiable, (see the equivalent definition)
  2. if \(f\) is non-smooth, gradient -> subgradient
  3. strong convexity \(\implies\) strict convexity

Note: Intuitively speaking, strong convexity means that there exists a quartic lower bound on the growth of the function.

Equivalent definition
\[ \begin{align} &(i)~f(y)\ge f(x)+\nabla f(x)^T(y-x)+\frac{\mu}{2}\lVert y-x \rVert^2,~\forall x, y.\ &(ii)~g(x) = f(x)-\frac{\mu}{2}\lVert x \rVert^2~\text{is convex},~\forall x.\ &(iii)~\langle \nabla f(x) - \nabla f(y),x-y \rangle \ge \mu \lVert x-y\rVert^2,~\forall x, y.\ &(iv)~f(\alpha x+ (1-\alpha) y) \le \alpha f(x) + (1-\alpha) f(y) - \frac{\alpha (1-\alpha)\mu}{2}\Vert x-y\rVert^2,~\alpha \in [0,1].\ &(v)~\nabla^2 f(x) \succeq \mu \boldsymbol{I} \end{align} \]


Lagrange Duality

Consider an optimization problem in standard form (not necessarily convex)
\[ \begin{array}{ll} \underset{x}{\text{minimize}} & f_0(x) \\text{subject to} & f_i(x) \le 0, ~i=1,\cdots,m \~ & h_i(x) = 0, ~i=1,\cdots,p \end{array} \]

The Lagrangian is
\[ L(x,\boldsymbol{\lambda},\boldsymbol{\mu}) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x) \]

The Lagrange dual function is defined as
\[ g(\lambda, \mu) = \inf_{x} L(x,\lambda,\mu) \]

技术分享图片

Lagrange dual problem
\[ \begin{array}{ll} \underset{\lambda, \mu}{\text{maximize}} & g(\lambda, \mu) \\text{subject to} & \boldsymbol{\lambda} \succeq \mathbf{0} \end{array} \]

Weak duality
\[ d^* \le p^* \]

  • \(d^*\): optima of dual problem
  • \(p^*\): optima of primal problem
  • duality gap: \(p^* - d^*\)
  • always hold

Strong dualiy
\[ d^* = p^* \]

  • constraint qualifications \(\implies\) strong duality
  • Slater’s Constraint Qualification: a convex problem is strictly feasible (i.e., \(\exists ~x \in \mathbf{int} \mathcal{D}: x \in \Omega\))

Complementary slackness
技术分享图片

KKT conditions
技术分享图片

技术分享图片


Cones

Tagent cone
Let M be a (nonempty) convex set and \(x^* \in M\), the tagent cone of \(M\) at \(x^*\) is the cone
\[ \begin{split} T_M(x^*) &= \{h \in \mathbb{R}^n | x^* + th \in M, \; \forall t > 0 \} \&= \{y \in \mathbb{R}^n ~|~ y - x^* \in M\} \end{split} \]

Note:

  • Geometrically, this is the set of all directions leading from \(x^*\) inside \(M\)
  • convex but not necessarily closed
  • fact: if \(x^*\) is a minimizer, then \(\forall h \in T_M(x^*) \implies h^T \nabla f(x^*) \ge 0\). (因为tangent cone里面都是可行解,所以必须不是下降方向)
  • \(T_M(x^*) = \mathbb{R}^n \iff x^* \in \mathbf{int}M\)

e.g. 多面体
\[ M = \{x | Ax \le b\} = \{x | a_i^Tx \le b_i, \; i = 1,\dots,m\} \]
the tangent cone at \(x^*\) is
\[ T_M(x^*) = \{h~|~a_i^T h \le 0, ~\forall i, ~a_i^T x^* = b_i\} \]


Normal cone: the polar cone of tangent cone
\[ N_M(x^*) = \{g \in \mathbb{R}^n ~|~ \langle g, y-x^*\rangle \le 0, ~\forall y \in M\} \]

Note:

  • normal cone is the polar to tangent cone, i.e.,
    \[ \begin{split} T_M(x^*) &= \{g \in \mathbb{R}^n ~|~ \langle g, y-x^*\rangle \ge 0, ~\forall y \in M\} \N_M(x^*) &= \{g \in \mathbb{R}^n ~|~ \langle g, y-x^*\rangle \le 0, ~\forall y \in M\} \end{split} \]
  • fact: if \(x^*\) is a minimizer, then \(-\nabla f(x^*) \in N_M(x^*)\).
  • 技术分享图片

Algorithm convergence

~ Stepsize Rule Convergence Rate Iteration Complexity
Gradient descent
strongly convex & smooth \(\eta_t = \frac{2}{\mu + L}\) \(O\left(\frac{\kappa -1}{\kappa +1}\right)^t\) \(O\left(\frac{\log\frac{1}{\epsilon}}{\log\frac{\kappa+1}{\kappa-1}}\right)\)
convex & smooth \(\eta_t = \frac{1}{L}\) \(O(\frac{1}{\sqrt{t}})\) \(O(\frac{1}{\epsilon})\)
Frank-Wolfe
(strongly) convex & smooth \(\eta_t = \frac{1}{t}\) \(O(\frac{1}{\sqrt{t}})\) \(O(\frac{1}{\epsilon})\)
Projected GD
convex & smooth \(\eta_t = \frac{1}{L}\) \(O(\frac{1}{\sqrt{t}})\) \(O(\frac{1}{\epsilon})\)
strongly convex & smooth \(\eta_t = \frac{1}{L}\) \(O\left((1-\frac{1}{\kappa})^t\right)\) \(O(\kappa\log\frac{1}{\epsilon})\)
Subgradient method
convex & Lipschitz \(\eta_t = \frac{1}{\sqrt{t}}\) \(O(\frac{1}{\sqrt{t}})\) \(O(\frac{1}{\epsilon^2})\)
strongly convex & Lipschitz \(\eta_t = \frac{1}{t}\) \(O\left(\frac{1}{t}\right)\) \(O(\frac{1}{\epsilon})\)
Proximal GD
convex & smooth (w.r.t. \(f\)) \(\eta_t = \frac{1}{L}\) \(O(\frac{1}{t})\) \(O(\frac{1}{\epsilon})\)
strongly convex & smooth (w.r.t. \(f\)) \(\eta_t = \frac{1}{L}\) \(O\left((1-\frac{1}{\kappa})^t\right)\) \(O(\kappa\log\frac{1}{\epsilon})\)

CVX notes

标签:red   必须   linear   \n   rspec   inf   where   normal   sqrt   

原文地址:https://www.cnblogs.com/yychi/p/9398439.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!