码迷,mamicode.com
首页 > 其他好文 > 详细

2012长春赛区题解(部分)

时间:2014-10-04 05:09:06      阅读:366      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   io   os   ar   for   strong   

总结起来自己还是太逗比,DP还是太弱,而DP却恰是算法思维能力的体现,现在要开始注重加强这方面的训练,遇到这类题目总是不敢想,令人担忧。

Problem B ZOJ 3656 Bit Magic

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3656

分析:

总共N个数,每个b[i][j]会对a[i]和a[j]的对应二进制位产生一定影响,具体见题目,我们需要做的是判断每个数的每个位是0或1,根据关系建立边,然后直接2sat就可以了。

做的时候一直MLE,发现怎么改都不可能过的。原来是我把每个数所有位都放在图里判断了,其实完全可以每次判断一个位,因为位与位之间毫无影响啊。

代码:

bubuko.com,布布扣
#include <bits/stdc++.h>
#define esp 1e-8
#define in freopen("solve_in.txt", "r", stdin);
#define out freopen("out.txt", "w", stdout);
#define pf(x) ((x)*(x))
#define lowbit(x) ((x)&(-(x)))
#define bug(x) printf("Line %d: >>>>>>\n", (x));
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define pb push_back
#define mp make_pair
#define pi acos(-1.0)
#define pf(x) ((x)*(x))

using namespace std;
typedef long long LL;
typedef unsigned short US;

const int maxn = 1100;
stack<US> S;
vector<US> g[maxn*2];
bitset<maxn*2> mark;
struct TwoSAT
{
    int n, c;

    bool dfs(int x)
    {
        if(mark[x^1]) return false;
        if(mark[x]) return true;
        mark[x] = 1;
        S.push(x);
        for(int i = 0; i < (int)g[x].size(); i++)
        {
            if(!dfs(g[x][i])) return false;
        }
        return true;
    }
    void init(int n)
    {
        this->n = n;
        while(!S.empty()) S.pop();
        for(int i = 0; i  < 2*maxn; i++)
            g[i].clear();
        mark.reset();
    }
    void add(US x, US y)
    {
        g[x].pb(y);
    }
    bool solve(int n)
    {
        for(int i = 0; i < 2*n; i += 2)
        {
            if(!mark[i] && !mark[i+1])
            {
                c = 0;
                if(!dfs(i))
                {
                    while(!S.empty()) mark[S.top()] = false, S.pop();
                    if(!dfs(i+1)) return false;
                }
            }
        }
        return true;
    }
} sat;
int idx(int u, int v)
{
    return u;
}
const int maxm = 555;

int a[maxm][maxm];

int main()
{

    int n;
    while(scanf("%d", &n) == 1)
    {


        int ok = 1;
        for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) scanf("%d", &a[i][j]);
        for(int k = 0; k < 31 && ok; k++)
        {
            sat.init(2*n);
            for(int i = 0; i < n && ok; i++) for(int j = 0; j < n &&ok; j++)
                {
                    int &y = a[i][j];
                    if(i == j)
                    {
                        if(y) ok = 0;
                        continue;
                    }
                    if(i%2 == 1 && j%2 == 1)
                    {
                        int u = idx(i, k);
                        int v = idx(j, k);
                        if(y&1)
                        {
                            sat.add(u<<1, v<<1|1);
                            sat.add(v<<1, u<<1|1);
                        }
                        else
                        {
                            sat.add(u<<1|1, u<<1);
                            sat.add(v<<1|1, v<<1);
//                            sat.add(u<<1, v<<1);
//                            sat.add(v<<1, u<<1);
                        }
                        y >>= 1;
                    }
                    else if(i%2 == 0 && j%2 == 0)
                    {
                        int u = idx(i, k);
                        int v = idx(j, k);
                        if(y&1)
                        {
                            sat.add(u<<1, u<<1|1);
                            sat.add(v<<1, v<<1|1);
                        }
                        else
                        {
                            sat.add(u<<1|1, v<<1);
                            sat.add(v<<1|1, u<<1);
                        }
                        y >>= 1;
                    }
                    else
                    {
                        int u = idx(i, k);
                        int v = idx(j, k);
                        if(y&1)
                        {
                            sat.add(u<<1, v<<1|1);
                            sat.add(v<<1, u<<1|1);
                            sat.add(u<<1|1, v<<1);
                            sat.add(v<<1|1, u<<1);
                        }
                        else
                        {
                            sat.add(u<<1, v<<1);
                            sat.add(v<<1, u<<1);
                            sat.add(u<<1|1, v<<1|1);
                            sat.add(v<<1|1, u<<1|1);
                        }
                        y >>= 1;
                    }
                }
            if(!sat.solve(n*2))
                ok = 0;
        }
        if(ok)
            puts("YES");
        else puts("NO");
    }
    return 0;
}
View Code

Problem C ZOJ 3657 The Little Girl who Picks Mushrooms 简单题

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3657

分析:

对于n <= 3,结果显然为1024,n == 4时,需要判断能否从中取出3个数和位1024整数倍,能够的话结果为1024,或者判断任意3个数作为剩下的数,然后计算结果。

n == 5则只能看能否取出3个数为1024整数倍,能则根据剩下的值计算结果。

代码:

bubuko.com,布布扣
 1 #include <bits/stdc++.h>
 2 #define esp 1e-8
 3 #pragma comment(linker, "/STACK:102400000,102400000")
 4 #define in freopen("F:\\rootial\\data\\data.txt", "r", stdin);
 5 #define IN freopen("solve_in.txt", "r", stdin);
 6 #define out freopen("out.txt", "w", stdout);
 7 #define pf(x) ((x)*(x))
 8 #define lowbit(x) ((x)&(-(x)))
 9 #define bug(x) printf("Line %d: >>>>>>\n", (x));
10 #define lson l, m, rt<<1
11 #define rson m+1, r, rt<<1|1
12 #define pb push_back
13 #define mp make_pair
14 #define pi acos(-1.0)
15 #define pf(x) ((x)*(x))
16 
17 using namespace std;
18 typedef long long LL;
19 int a[10];
20 
21 int main(){
22 
23     int n;
24     while(scanf("%d", &n) == 1){
25         int sum = 0;
26         for(int i = 0; i < n; i++){
27                 scanf("%d", a+i), sum += a[i];
28         }
29         if(n <= 3) cout<<1024<<endl;
30         else{
31             int ans = 0;
32             if(n == 4){
33                 for(int i = 0; i < 4; i++)
34                 for(int j = i+1; j < 4; j++){
35                     int tmp = a[i]+a[j];
36                     if(tmp <= 1024)
37                         ans = max(tmp, ans);
38                     else ans = max(ans, tmp%1024 + 1024*(tmp%1024 == 0));
39                 }
40                 for(int i = 0; i < n; i++) for(int j = i+1; j < n; j++) for(int k = j+1; k < n; k++)
41                 {
42                      int tmp = a[i]+a[j]+a[k];
43                      if(tmp %1024 == 0)
44                         ans = 1024;
45                 }
46             }
47             else {
48                 for(int i = 0; i < n; i++) for(int j = i+1; j < n; j++) for(int k = j+1; k < n; k++)
49                 {
50                     int tmp = a[i]+a[j]+a[k];
51                     if(tmp%1024 == 0){
52                         int s = sum-tmp;
53                         if(s <= 1024)
54                             ans = max(ans, s);
55                         else ans = max(ans, s%1024 + 1024*(s%1024 == 0));
56                     }
57                 }
58             }
59             cout<<ans<<endl;
60 
61         }
62 
63     }
64     return 0;
65 }
View Code

Problem E ZOJ 3659 Conquer a New Region

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3659

分析:

题意是一棵树,每条边有一个正权值,一个点到另一点的花费是经过的路径上边的最小权值,要求一个中心,其他所有点到这个点的总花费最大。

做法是这样的,按边权值从大到小排序,构建最大生成树,并查集里记录结点个数,及此时这个并查集构成的子树里的总花费,按权值依次选择每条边,遇到两个点不在同一并查集时,由于此时中心肯定在其中一个并查集里,所以计算这两种情况下,连接起来后总花费。因为此时这条边是两个子树里最小的,计算中心在另一并查集里时totalCost = 此并查集结点数目*边cost + 另一并查集花费,取两种情况下最大值作为合并后并查集的花费,并更新结点数目。最后一个并查集的总花费即为结果。

代码:

bubuko.com,布布扣
 1 #include <bits/stdc++.h>
 2 #define pb push_back
 3 #define mp make_pair
 4 #define in freopen("data.txt", "r", stdin);
 5 #define bug(x) printf("Line : %u >>>>>>\n", (x));
 6 
 7 using namespace std;
 8 typedef long long LL;
 9 typedef unsigned long long ULL;
10 const int maxn = 200000 + 10;
11 
12 struct Edge{
13     int u, v, c;
14     Edge(){}
15     Edge(int u, int v, int c):u(u), v(v), c(c){}
16     bool operator < (const Edge &o)const{
17         return c > o.c;
18     }
19 }e[maxn];
20 struct Node{
21     int f, num;
22     LL cost;
23     Node(){}
24     Node(int f, int num, LL cost):f(f), num(num), cost(cost){}
25 } fa[maxn];
26 LL ans = 0;
27 int findset(int x){ return x == fa[x].f ? x : fa[x].f = findset(fa[x].f);}
28 void makeTree(int n){
29     for(int i = 1; i <= n; i++) fa[i] = Node(i, 1, 0);
30     for(int i = 0; i < n-1; i++){
31         int u = e[i].u;
32         int v = e[i].v;
33         int c = e[i].c;
34         int fu = findset(u);
35         int fv = findset(v);
36         if(fu != fv){
37             LL ans1 = (LL)fa[fu].num*c + fa[fv].cost;
38             LL ans2 = (LL)fa[fv].num*c + fa[fu].cost;
39             ans1 = max(ans1, ans2);
40             fa[fu].f = fv;
41             fa[fv].cost = ans1;
42             fa[fv].num += fa[fu].num;
43             ans = max(ans, ans1);
44         }
45     }
46 }
47 int main() {
48     
49     int n;
50     while(scanf("%d", &n) == 1){
51         ans = 0;
52         for(int i = 0; i < n-1; i++) scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].c);
53         sort(e, e+n-1);
54         makeTree(n);
55         printf("%lld\n", ans);
56     }
57     return  0;
58 }
View Code

Problem H ZOJ 3662 Math Magic

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3662

分析:

问选取k个正数,和为N,最小公倍数为M,有多少种方法?考虑数的顺序。

对于M首先分解质因数Div[i],记录每个Div[i]数目cnt[i],然后考虑k个数中每个数a[k],包好的质因数Div[i]的个数,由于LCM为M,每个Div[i], 要保证k个数中至少有一个数 包含有cnt[i]个。这里用bitmask表示,s相应位为1,表示Div[i]已经有a[k]包含cnt[i]个了

思路是Dp的,考虑前k个数,和为sum,Div的包含状态表示为s时选取方案数目。

转移时:dp[i+1][j+sum][s|ss] += dp[i][j][s];

首先要预处理一下每个a[k]所有可能情况,也就是根据可能包含的Div[i]的数目,算出和sum,状态s,dfs处理一下。

代码:

bubuko.com,布布扣
 1 #include <bits/stdc++.h>
 2 #define pb push_back
 3 #define mp make_pair
 4 #define in freopen("data.txt", "r", stdin);
 5 #define bug(x) printf("Line : %u >>>>>>\n", (x));
 6 
 7 using namespace std;
 8 typedef long long LL;
 9 typedef unsigned long long ULL;
10 const int M = (int)1e9 + 7;
11 const int maxn = 1111;
12 LL dp[111][maxn][1<<4];
13 int p[maxn], vis[maxn], prime;
14 
15 void getPrime(int n) {
16     for(int i = 2; i < n; i++) {
17         if(vis[i] == 0) {
18             p[prime++] = i;
19             for(int j = i*i; j < n; j+=i)
20                 vis[j] = 1;
21         }
22     }
23 }
24 vector<int> Div;
25 int cnt[maxn];
26 
27 void getDiv(int n) {
28     Div.clear();
29     for(int i = 0; i < prime; i++) {
30         if(n%p[i] == 0) {
31             Div.pb(p[i]);
32             int sz = Div.size()-1;
33             cnt[sz] = 0;
34             while(n%p[i] == 0) {
35                 cnt[sz]++;
36                 n /= p[i];
37             }
38             if(n == 1) break;
39         }
40     }
41     if(n != 1) {
42         Div.pb(n);
43         cnt[Div.size()-1] = 1;
44     }
45 }
46 vector<pair<int, int> > State;
47 void getState(int pos, int sum, int s) {
48     if(pos == 0) {
49         State.pb(make_pair(sum, s));
50         return;
51     }
52     int tmp = 1;
53     for(int i = 0; i <= cnt[pos-1]; i++, tmp *= Div[pos-1]) {
54         getState(pos-1, sum*tmp, s|(i == cnt[pos-1] ? (1<<(pos-1)) : 0));
55     }
56 }
57 int main() {
58 
59     int n, m, k;
60     getPrime(maxn);
61     while(scanf("%d%d%d", &n, &m, &k) == 3) {
62         getDiv(m);
63         memset(dp, 0, sizeof dp);
64         int sz = Div.size();
65         State.clear();
66         getState(Div.size(), 1, 0);
67         dp[0][0][0] = 1;
68         for(int i = 0; i < k; i++)
69             for(int j = 0; j < n; j++) for(int s = 0; s < (1<<sz); s++) {
70                     for(int kk = 0; kk < State.size(); kk++) {
71                         int sum = State[kk].first;
72                         int ss = State[kk].second;
73                         if(j+sum <= n)
74                             dp[i+1][j+sum][ss|s] = (dp[i+1][j+sum][ss|s] + dp[i][j][s])%M;
75                     }
76                 }
77         cout<<dp[k][n][(1<<sz)-1]<<endl;
78     }
79     return 0;
80 }
View Code

 

2012长春赛区题解(部分)

标签:style   blog   http   color   io   os   ar   for   strong   

原文地址:http://www.cnblogs.com/rootial/p/4005596.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!