标签:rom point pid instance 一对一 ace inpu collect form
es和spark的集成比较简单, 直接使用内部封装的一些方法即可
版本设置说明:
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/requirements.html
maven依赖说明:
https://www.elastic.co/guide/en/elasticsearch/hadoop/current/install.html
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <parent> <artifactId>xiaoniubigdata</artifactId> <groupId>com.wenbronk</groupId> <version>1.0</version> </parent> <modelVersion>4.0.0</modelVersion> <artifactId>spark06-es</artifactId> <properties> <spark.version>2.3.1</spark.version> <spark.scala.version>2.11</spark.scala.version> <scala.version>2.11.12</scala.version> </properties> <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_${spark.scala.version}</artifactId> <version>${spark.version}</version> <!--<scope>provided</scope>--> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_${spark.scala.version}</artifactId> <version>${spark.version}</version> <!--<scope>provided</scope>--> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_${spark.scala.version}</artifactId> <version>${spark.version}</version> <!--<scope>provided</scope>--> </dependency> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch-spark-20_2.11</artifactId> <version>6.3.2</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <version>2.15.2</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-deploy-plugin</artifactId> <version>2.8.2</version> <configuration> <skip>true</skip> </configuration> </plugin> </plugins> </build> </project>
1), read
package com.wenbronk.spark.es.rdd import org.apache.spark.rdd.RDD import org.apache.spark.sql.SparkSession import org.apache.spark.{SparkConf, SparkContext} /** * 从es中读取数据 */ object ReadMain { def main(args: Array[String]) = { // val sparkconf = new SparkConf().setAppName("read-es").setMaster("local[4]") // val spark = new SparkContext(sparkconf) val sparkSession = SparkSession.builder() .appName("read-es-rdd") .master("local[4]") .config("es.index.auto.create", true) .config("es.nodes", "10.124.147.22") .config("es.port", 9200) .getOrCreate() val spark = sparkSession.sparkContext // 自定义query, 导入es包 import org.elasticsearch.spark._ // 以array方式读取 val esreadRdd: RDD[(String, collection.Map[String, AnyRef])] = spark.esRDD("macsearch_fileds/mac", """ |{ | "query": { | "match_all": {} | } |} """.stripMargin) val value: RDD[(Option[AnyRef], Int)] = esreadRdd.map(_._2.get("mac")).map(mac => (mac, 1)).reduceByKey(_ + _) .sortBy(_._2) val tuples: Array[(Option[AnyRef], Int)] = value.collect() tuples.foreach(println) esreadRdd.saveAsTextFile("/Users/bronkwen/work/IdeaProjects/xiaoniubigdata/spark06-es/target/json") sparkSession.close() } }
2, readJson
package com.wenbronk.spark.es.rdd import org.apache.spark.sql.SparkSession import scala.util.parsing.json.JSON object ReadJsonMain { def main(args: Array[String]): Unit = { val sparkSession = SparkSession.builder() .appName("read-es-rdd") .master("local[4]") .config("es.index.auto.create", true) .config("es.nodes", "10.124.147.22") .config("es.port", 9200) .getOrCreate() val spark = sparkSession.sparkContext // 使用json的方式读取, 带查询的 import org.elasticsearch.spark._ val esJsonRdd = spark.esJsonRDD("macsearch_fileds/mac", """ { "query": { "match_all": {} } } """.stripMargin) esJsonRdd.map(_._2).saveAsTextFile("/Users/bronkwen/work/IdeaProjects/xiaoniubigdata/spark06-es/target/json") sparkSession.close() } }
3, write
package com.wenbronk.spark.es.rdd import org.apache.spark.rdd.RDD import org.apache.spark.sql.SparkSession import org.elasticsearch.spark.rdd.EsSpark object WriteMain { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[4]") .appName("write-spark-es") .config("es.index.auto.create", true) .config("es.nodes", "10.124.147.22") .config("es.port", 9200) .getOrCreate() val df: RDD[String] = spark.sparkContext.textFile("/Users/bronkwen/work/IdeaProjects/xiaoniubigdata/spark06-es/target/json") // df.map(_.substring()) import org.elasticsearch.spark._ // df.rdd.saveToEs("spark/docs") // EsSpark.saveToEs(df, "spark/docs") EsSpark.saveJsonToEs(df, "spark/json") spark.close() } }
4, 写入多个index中
package com.wenbronk.spark.es.rdd import org.apache.spark.sql.SparkSession object WriteMultiIndex { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[4]") .appName("es-spark-multiindex") .config("es.es.index.auto.create", true) .config("es.nodes", "10.124.147.22") .config("es.port", 9200) .getOrCreate() val sc = spark.sparkContext val game = Map("media_type"->"game","title" -> "FF VI","year" -> "1994") val book = Map("media_type" -> "book","title" -> "Harry Potter","year" -> "2010") val cd = Map("media_type" -> "music","title" -> "Surfing With The Alien") import org.elasticsearch.spark._ // 可以自定义自己的metadata, 只添加id sc.makeRDD(Seq((1, game), (2, book), (3, cd))).saveToEs("my-collection-{media_type}/doc") spark.close() } }
1), write
package com.wenbronk.spark.es.stream import org.apache.spark.streaming.dstream.InputDStream import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.elasticsearch.spark.rdd.EsSpark import org.elasticsearch.spark.streaming.EsSparkStreaming import scala.collection.mutable object WriteStreamingMain { def main (args: Array[String]): Unit = { val conf = new SparkConf().setAppName("es-spark-streaming-write").setMaster("local[4]") conf.set("es.index.auto.create", "true") conf.set("es.nodes", "10.124.147.22") // 默认端口9200, 不知道怎么设置 Int类型 val sc = new SparkContext(conf) val ssc = new StreamingContext(sc, Seconds(1)) val numbers = Map("one" -> 1, "two" -> 2, "three" -> 3) val airports = Map("arrival" -> "Otopeni", "SFO" -> "San Fran") val rdd = sc.makeRDD(Seq(numbers, airports)) val microbatches = mutable.Queue(rdd) val dstream: InputDStream[Map[String, Any]] = ssc.queueStream(microbatches) // import org.elasticsearch.spark.streaming._ // dstream.saveToEs("sparkstreaming/doc") // EsSparkStreaming.saveToEs(dstream, "sparkstreaming/doc") // 带有id的 // EsSparkStreaming.saveToEs(dstream, "spark/docs", Map("es.mapping.id" -> "id")) // json格式 EsSparkStreaming.saveJsonToEs(dstream, "sparkstreaming/json") ssc.start() ssc.awaitTermination() } }
2, 写入带有meta的, rdd也是用
package com.wenbronk.spark.es.stream import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.streaming.{Seconds, StreamingContext} import scala.collection.mutable object WriteStreamMeta { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("es-spark-streaming-write").setMaster("local[4]") conf.set("es.index.auto.create", "true") conf.set("es.nodes", "10.124.147.22") // 默认端口9200, 不知道怎么设置 Int类型 val sc = new SparkContext(conf) val ssc = new StreamingContext(sc, Seconds(1)) val otp = Map("iata" -> "OTP", "name" -> "Otopeni") val muc = Map("iata" -> "MUC", "name" -> "Munich") val sfo = Map("iata" -> "SFO", "name" -> "San Fran") val airportsRDD = sc.makeRDD(Seq((1, otp), (2, muc), (3, sfo))) val microbatches = mutable.Queue(airportsRDD) import org.elasticsearch.spark.streaming._ ssc.queueStream(microbatches).saveToEsWithMeta("airports/2015") ssc.start() ssc.awaitTermination() } /** * 使用多种meta */ def main1(args: Array[String]): Unit = { val ID = "id"; val TTL = "ttl" val VERSION = "version" val conf = new SparkConf().setAppName("es-spark-streaming-write").setMaster("local[4]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc, Seconds(1)) val otp = Map("iata" -> "OTP", "name" -> "Otopeni") val muc = Map("iata" -> "MUC", "name" -> "Munich") val sfo = Map("iata" -> "SFO", "name" -> "San Fran") // 定义meta 不需要一对一对应 val otpMeta = Map(ID -> 1, TTL -> "3h") val mucMeta = Map(ID -> 2, VERSION -> "23") val sfoMeta = Map(ID -> 3) val airportsRDD = sc.makeRDD(Seq((otpMeta, otp), (mucMeta, muc), (sfoMeta, sfo))) val microbatches = mutable.Queue(airportsRDD) import org.elasticsearch.spark.streaming._ ssc.queueStream(microbatches).saveToEsWithMeta("airports/2015") ssc.start() ssc.awaitTermination() } }
1), read
package com.wenbronk.spark.es.sql import org.apache.spark.sql.{DataFrame, SparkSession} object ESSqlReadMain { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[4]") .appName("es-sql-read") .config("es.index.auto.create", true) // 转换sql为es的DSL .config("pushown", true) .config("es.nodes", "10.124.147.22") .config("es.port", 9200) .getOrCreate() // 完全查询 // val df: DataFrame = spark.read.format("es").load("macsearch_fileds/mac") import org.elasticsearch.spark.sql._ val df = spark.esDF("macsearch_fileds/mac", """ |{ | "query": { | "match_all": { | } |} """.stripMargin) // 显示下数据 df.printSchema() df.createOrReplaceTempView("macseach_fileds") val dfSql: DataFrame = spark.sql( """ select mac, count(mac) con from macseach_fileds group by mac order by con desc """.stripMargin) dfSql.show() // 存入本地文件中 import spark.implicits._ df.write.json("/Users/bronkwen/work/IdeaProjects/xiaoniubigdata/spark06-es/target/sql/json") spark.stop() } }
2), write
package com.wenbronk.spark.es.sql import org.apache.spark.sql.{DataFrame, SparkSession} import org.elasticsearch.spark.sql.EsSparkSQL object ESSqlWriteMain { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[4]") .appName("es-sql-write") .config("es.index.auto.create", true) .config("es.nodes", "10.124.147.22") .config("es.port", 9200) .getOrCreate() import spark.implicits._ val df: DataFrame = spark.read.format("json").load("/Users/bronkwen/work/IdeaProjects/xiaoniubigdata/spark06-es/target/sql/json") df.show() // json格式直接写入 // import org.elasticsearch.spark.sql._ // df.saveToEs("spark/people") EsSparkSQL.saveToEs(df, "spark/people") spark.close() } }
对 结构化流不太熟悉, 等熟悉了在看
package com.wenbronk.spark.es.structstream import org.apache.spark.sql.SparkSession object StructStreamWriteMain { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .appName("structstream-es-write") .master("local[4]") .config("es.index.auto.create", true) .config("es.nodes", "10.124.147.22") .config("es.port", 9200) .getOrCreate() val df = spark.readStream .format("json") .load("/Users/bronkwen/work/IdeaProjects/xiaoniubigdata/spark06-es/target/json") df.writeStream .option("checkpointLocation", "/save/location") .format("es") .start() spark.close() } }
标签:rom point pid instance 一对一 ace inpu collect form
原文地址:https://www.cnblogs.com/wenbronk/p/9406669.html