码迷,mamicode.com
首页 > 其他好文 > 详细

Luogu P2261 [CQOI2007]余数求和

时间:2018-08-03 10:37:45      阅读:115      评论:0      收藏:0      [点我收藏+]

标签:ace   div   can   mod   范围   ==   pre   开始   想象力   

题目大意

给定两个数$\large n$和$\large k$求$$\large {G(n,k)=\sum_{i=1}^{n}k\ mod\ i}$$。

 

解题思路

很明显,60分的暴力很好拿,但是数据范围限制了你的想象力。暴力绝对会被卡死。所以考虑有没有规律可寻。

自己手玩了一下数据发现最后$\large{i>k}$的时候余数都是一样的,都是$\large k$,那么其他的部分是不是也是相同的呢?

于是又开始YY。最后发现整个$\large{k\ mod \ i}$序列可以分为好几个子序列,每个子序列的余数相同。

所以可以用分块来解决,分块的话,考虑每次计算一个余数相同的序列的左右端点,就可以算出这一段的余数之和。

假设我们知道$\large{a\ mod\ b = a - b \times \lfloor \frac{a}{b}\rfloor}$那么之前的式子就可以变成$$\large{G(n,k) = \prod_{i=1}^{n}k-i\times \lfloor \frac{k}{i}\rfloor=n\times k-\prod_{i=1}^{n}i\times \lfloor \frac{k}{i}\rfloor}$$。

 

代码实现

#include <iostream>
#include <cstdio>

using namespace std;

typedef long long LL;
LL n, k, Ans;

int main() {
	scanf("%lld%lld", &n, &k);
	for(LL l=1, r; l<=n; l=r+1) {
		LL t = (k/l);
		if(t == 0) r = n;
		else r = min(k/t, n);
		Ans -= t*(r-l+1)*(r+l)/2;
	}
	printf("%lld", Ans+n*k);
}

  

Luogu P2261 [CQOI2007]余数求和

标签:ace   div   can   mod   范围   ==   pre   开始   想象力   

原文地址:https://www.cnblogs.com/bljfy/p/9411395.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!