码迷,mamicode.com
首页 > 其他好文 > 详细

【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

时间:2018-08-03 18:08:32      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:enter   round   2.0   rop   article   1.2   预测   举例   tomat   

在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢?

首先明确一点,loss是代价值,也就是我们要最小化的值

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
除去name参数用以指定该操作的name,与方法有关的一共两个参数:
第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

第二个参数labels:实际的标签,大小同上

具体的执行流程大概分为两步:

第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率)

第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:

\[H_{y'}(y)=-\sum_i{y'_ilog(y_i)}\]

其中\(y'_i\)指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

\(y_i\)就是softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值

显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!

理论讲完了,上代码

import tensorflow as tf
 
#our NN's output
logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
#step1:do softmax
y=tf.nn.softmax(logits)
#true label
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
#step2:do cross_entropy
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#do cross_entropy just one step
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!!
 
with tf.Session() as sess:
    softmax=sess.run(y)
    c_e = sess.run(cross_entropy)
    c_e2 = sess.run(cross_entropy2)
    print("step1:softmax result=")
    print(softmax)
    print("step2:cross_entropy result=")
    print(c_e)
    print("Function(softmax_cross_entropy_with_logits) result=")
    print(c_e2)

输出结果是:

step1:softmax result=
[[ 0.09003057  0.24472848  0.66524094]
 [ 0.09003057  0.24472848  0.66524094]
 [ 0.09003057  0.24472848  0.66524094]]
step2:cross_entropy result=
1.22282
Function(softmax_cross_entropy_with_logits) result=
1.2228

最后大家可以试试e^1/(e^1+e^2+e^3)是不是0.09003057,发现确实一样!!这也证明了我们的输出是符合公式逻辑的

原文链接:【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

技术分享图片
技术分享图片
技术分享图片
技术分享图片


MARSGGBO?原创





2018-7-30



【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

标签:enter   round   2.0   rop   article   1.2   预测   举例   tomat   

原文地址:https://www.cnblogs.com/marsggbo/p/9415360.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!