1.问题分析
看看两个链表相交到底是怎么回事吧,有这样的的几个事实:(假设链表中不存在环)
(1)一旦两个链表相交,那么两个链表中的节点一定有相同地址。
(2)一旦两个链表相交,那么两个链表从相交节点开始到尾节点一定都是相同的节点。
分析出来了问题的本质,那么思路也就自然有了。
2.问题解法
2.1 哈希解法:
既然连个链表一旦相交,相交节点一定有相同的内存地址,而不同的节点内存地址一定是不同的,那么不妨利用内存地址建立哈希表,如此通过判断两个链表中是否存在内存地址相同的节点判断两个链表是否相交。具体做法是:遍历第一个链表,并利用地址建立哈希表,遍历第二个链表,看看地址哈希值是否和第一个表中的节点地址值有相同即可判断两个链表是否相交。
时间复杂度O(length1 + length2)
空间复杂度O(length1)
分析:时间复杂度是线性的,可以接受,并且可以顺便找到第一个相交节点,但是却增加了O(length1)的空间复杂度,这显然不能令人满意。
2.2 问题转化
如果两个链表中存在相交节点,那么将第二个链表接到第一个链表的后面,然后从第二个链表的表头开始遍历,如果存在环,则遍历过程一定会回到链表二的表头节点。可是这种方法似乎并不能找到第一个相交节点。怎么办呢?怎样才能判断链表中是否存在环,并且找到环的开始节点呢?
网上看到了这样的一个解法:设置两个指针fast和slow,初始值都指向头,slow每次前进一步,fast每次前进二步,如果链表存在环,则fast必定先进入环,而slow后进入环,两个指针必定相遇。(当然,fast先行头到尾部为NULL,则为无环链表),这样就可以判断两个链表是否相交了
下面看看怎么找环的入口,当fast与slow相遇时,slow肯定没有走遍历完链表,而fast已经在环内循环了n圈(1<=n)。假设slow走了s步,则fast走了2s步(fast步数还等于s 加上在环上多转的n圈),设环长为r,则:
2s = s + nr
s= nr
设整个链表长L,入口环与相遇点距离为x,起点到环入口点的距离为a。
a + x = nr
a + x = (n – 1)r +r = (n-1)r + L - a
a = (n-1)r + (L – a – x)
(L – a – x)为相遇点到环入口点的距离,由此可知,从链表头到环入口点等于(n-1)循环内环+相遇点到环入口点(从相遇点向后遍历循环回到入口点的距离),于是我们从链表头、与相遇点分别设一个指针,每次各走一步,两个指针必定相遇,且相遇点为环入口点,也即为两个链表的第一个相同节点。
2.3 抓住要点
不妨遍历每个链表保存最后一个节点,看看最后一个节点是否是同一个节点,这种情况时间复杂度是O(length1 + length2)。基本也不需要什么空间,似乎是一个不错的想法哦,那么怎么找到第一个相交节点呢?
可以遍历的过程中记录链表的长度L1和L2,假设L1>L2,设置p1与p2分别指向L1和L2的链表头,让p1先前进L1-L2步,再同时移动p1与p2,那么在两个指针相遇时,即是链表的交点。