标签:res pre ima begin lin 存在 bsp 直线检测 data
霍夫变换是一种特征检测(feature extraction),被广泛应用在图像分析(image analysis)、电脑视觉 (computer vision)以及数位影像处理 (digital image processing)。 霍夫变换是用来辨别找出物件中的特征,例如:线条。他的算法流程大致如下,给定一个物件、要辨别的形状的种类,算法会在参数空间(parameter space)中执行投票来决定物体的形状, 而这是由累加空间(accumulator space)里的局部最大值(local maximum)来决定。
Hough变换的基本原理在于,利用点与线的对偶性,将图像空间的线条变为参数空间的聚集点,从而检测给定图像是否存在给定性质的曲线。
clc;clear ; close set(0,‘defaultfigurecolor‘,[1,1,1]) load DATA2.mat data = D1; BW = data; figure(1) imshow(BW) title(‘原图像‘);
figure(2) subplot 211; %%进行霍夫变换 [H, theta , rho] = hough (BW); %%绘制霍夫空间 imshow(imadjust(mat2gray(H)),[],‘XData‘,theta,‘YData‘,rho,... ‘InitialMagnification‘,‘fit‘); xlabel(‘\theta (degrees)‘), ylabel(‘\rho‘); axis on, axis normal, hold on; colormap(hot); title(‘霍夫空间‘) %%峰值 P = houghpeaks(H,5,‘threshold‘,0.5*max(H(:))); x = theta(P(:,2)); y = rho(P(:,1)); plot(x,y,‘s‘,‘color‘,‘black‘); %lines = houghlines(BW,theta,rho,P,‘FillGap‘,10,‘MinLength‘,10); lines = houghlines(BW,theta,rho,P,‘FillGap‘,10,‘MinLength‘,10); subplot 212 imshow(BW) ,hold on max_len = 0; count = 1; points = zeros(2,2); for k = 1:length(lines) points(count,1) = lines(k).point1(1); points(count,2) = lines(k).point1(2); count =count +1; points(count,1) = lines(k).point2(1); points(count,2) = lines(k).point2(2); count =count +1; xy = [lines(k).point1; lines(k).point2]; plot(xy(:,1),xy(:,2),‘LineWidth‘,2,‘Color‘,‘green‘); % Plot beginnings and ends of lines plot(xy(1,1),xy(1,2),‘x‘,‘LineWidth‘,2,‘Color‘,‘yellow‘); plot(xy(2,1),xy(2,2),‘x‘,‘LineWidth‘,2,‘Color‘,‘red‘); end title(‘直线检测‘);
效果如下:
标签:res pre ima begin lin 存在 bsp 直线检测 data
原文地址:https://www.cnblogs.com/francischeng/p/9432336.html