标签:最小生成树 class using 需要 ref line 一个 最小 force
给出一张\(n\)点\(m\)条边的无向图,求一棵满足\(1\)号点度数恰好为\(k\)的最小生成树,并输出方案。
\(1\le k\le n\le5000,m\le100000\)
二分一个权值,给每条连接\(1\)号点的边的边权加上这个权值,跑最小生成树即可。
输出方案有点恶心,需要合理控制同边权的边的选取。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 1e5+5;
struct edge{
int u,v,w,id;
bool operator < (const edge &b) const
{return w==b.w?u<b.u:w<b.w;}
}E[N];
int n,m,k,fa[N],vis[N],ans,tot;
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
int solve(int c){
for (int i=1;i<=m;++i) if (E[i].u==1) E[i].w+=c;
sort(E+1,E+m+1);tot=0;
for (int i=1;i<=n;++i) fa[i]=i;
for (int i=1;i<=m;++i)
if (find(E[i].u)!=find(E[i].v)){
fa[find(E[i].u)]=find(E[i].v);
tot+=E[i].u==1;
}
for (int i=1;i<=m;++i) if (E[i].u==1) E[i].w-=c;
return tot;
}
void getans(int c){
for (int i=1;i<=m;++i) if (E[i].u==1) E[i].w+=c;
sort(E+1,E+m+1);tot=ans=0;
for (int i=1;i<=n;++i) fa[i]=i;
for (int i=1;i<=m;++i)
if (find(E[i].u)!=find(E[i].v)&&tot+(E[i].u==1)<=k){
fa[find(E[i].u)]=find(E[i].v);
++ans;tot+=E[i].u==1;vis[i]=1;
}else vis[i]=0;
if (ans<n-1||tot<k) {puts("-1");return;}
printf("%d\n",n-1);
for (int i=1;i<=m;++i) if (vis[i]) printf("%d ",E[i].id);
puts("");
}
int main(){
n=gi();m=gi();k=gi();
for (int i=1;i<=m;++i){
int u=gi(),v=gi(),w=gi();
if (u>v) swap(u,v);
E[i]=(edge){u,v,w,i};
}
int L=-N,R=N,P=1e9;
while (L<=R){
int mid=L+R>>1;
if (solve(mid)>=k) P=mid,L=mid+1;else R=mid-1;
}
if (P==1e9) return puts("-1"),0;
getans(P);
return 0;
}
标签:最小生成树 class using 需要 ref line 一个 最小 force
原文地址:https://www.cnblogs.com/zhoushuyu/p/9433708.html