码迷,mamicode.com
首页 > 其他好文 > 详细

zookeeper选举

时间:2018-08-10 23:16:39      阅读:177      评论:0      收藏:0      [点我收藏+]

标签:选择   lower   结果   最新   初始化   检查   变更   时钟   更新   

Zookeeper leader选举

让我们分析如何在ZooKeeper集合中选举leader节点。考虑一个集群中有N个节点。leader选举的过程如下:

 

  • 所有节点创建具有相同路径 /app/leader_election/guid_ 的顺序、临时节点。
  • ZooKeeper集合将附加10位序列号到路径,创建的znode将是 /app/leader_election/guid_0000000001,/app/leader_election/guid_0000000002等。
  • 对于给定的实例,在znode中创建最小数字的节点成为leader,而所有其他节点是follower。
  • 每个follower节点监视下一个具有最小数字的znode。例如,创建znode/app/leader_election/guid_0000000008的节点将监视znode/app/leader_election/guid_0000000007,创建znode/app/leader_election/guid_0000000007的节点将监视znode/app/leader_election/guid_0000000006。
  • 如果leader关闭,则其相应的znode/app/leader_electionN会被删除。
  • 下一个在线follower节点将通过监视器获得关于leader移除的通知。
  • 下一个在线follower节点将检查是否存在其他具有最小数字的znode。如果没有,那么它将承担leader的角色。否则,它找到的创建具有最小数字的znode的节点将作为leader。
  • 类似地,所有其他follower节点选举创建具有最小数字的znode的节点作为leader。

 

leader选举是一个复杂的过程,但ZooKeeper服务使它非常简单。让我们在下一章中继续学习ZooKeeper安装,以用于开发目的。

Master 选举

Master 选举可以说是 ZooKeeper 最典型的应用场景了。比如 HDFS 中 Active NameNode 的选举、YARN 中 Active ResourceManager 的选举和 HBase 中 Active HMaster 的选举等。

针对 Master 选举的需求,通常情况下,我们可以选择常见的关系型数据库中的主键特性来实现:希望成为 Master 的机器都向数据库中插入一条相同主键ID的记录,数据库会帮我们进行主键冲突检查,也就是说,只有一台机器能插入成功——那么,我们就认为向数据库中成功插入数据的客户端机器成为Master。

依靠关系型数据库的主键特性确实能够很好地保证在集群中选举出唯一的一个Master。

但是,如果当前选举出的 Master 挂了,那么该如何处理?谁来告诉我 Master 挂了呢?显然,关系型数据库无法通知我们这个事件。但是,ZooKeeper 可以做到!

利用 ZooKeepr 的强一致性,能够很好地保证在分布式高并发情况下节点的创建一定能够保证全局唯一性,即 ZooKeeper 将会保证客户端无法创建一个已经存在的 ZNode。

也就是说,如果同时有多个客户端请求创建同一个临时节点,那么最终一定只有一个客户端请求能够创建成功。利用这个特性,就能很容易地在分布式环境中进行 Master 选举了。

成功创建该节点的客户端所在的机器就成为了 Master。同时,其他没有成功创建该节点的客户端,都会在该节点上注册一个子节点变更的 Watcher,用于监控当前 Master 机器是否存活,一旦发现当前的Master挂了,那么其他客户端将会重新进行 Master 选举。

这样就实现了 Master 的动态选举。

9.1 zookeeper的选举机制(zk的数据一致性核心算法paxos)

以一个简单的例子来说明整个选举的过程.

假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生什么.

1) 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态

2) 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1,2还是继续保持LOOKING状态.

3) 服务器3启动,根据前面的理论分析,服务器3成为服务器1,2,3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader.

4) 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1,2,3,4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了.

5) 服务器5启动,同4一样,当小弟.

 

9.2 非全新集群的选举机制(数据恢复)

那么,初始化的时候,是按照上述的说明进行选举的,但是当zookeeper运行了一段时间之后,有机器down掉,重新选举时,选举过程就相对复杂了。

需要加入数据version、leader id和逻辑时钟。

数据version:数据新的version就大,数据每次更新都会更新version。

Leader id:就是我们配置的myid中的值,每个机器一个。

逻辑时钟:这个值从0开始递增,每次选举对应一个值,也就是说:  如果在同一次选举中,那么这个值应该是一致的 ;  逻辑时钟值越大,说明这一次选举leader的进程更新.

选举的标准就变成:

                  1、逻辑时钟小的选举结果被忽略,重新投票

                  2、统一逻辑时钟后,数据id大的胜出

                  3、数据id相同的情况下,leaderid大的胜出

根据这个规则选出leader。

zookeeper选举

标签:选择   lower   结果   最新   初始化   检查   变更   时钟   更新   

原文地址:https://www.cnblogs.com/ggzhangxiaochao/p/9457184.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!