码迷,mamicode.com
首页 > 其他好文 > 详细

垃圾回收机制

时间:2018-08-11 01:19:22      阅读:144      评论:0      收藏:0      [点我收藏+]

标签:过多   资源   提高   大连   吞吐量   负载   任务   记录   用户   

JVM垃圾收集器 CMS 收集器 CMS(Concurrent Mark Sweep),从 Mark Sweep 可以知道它是基于标记-清除算法实现的。 特点:并发收集、低停顿。 分为以下四个流程: 1.初始标记:仅仅只是标记一下 GC Roots 能直接关联到的对象,速度很快,需要停顿。 2.并发标记:进行 GC Roots Tracing 的过程,它在整个回收过程中耗时最长,不需要停顿。 3.重新标记:为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,需要停顿。 4.并发清除:不需要停顿。 在整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,不需要进行停顿。 具有以下缺点: 1. 对 CPU 资源敏感。CMS 默认启动的回收线程数是 (CPU 数量 + 3) / 4,当 CPU 不足 4 个时,CMS 对用户程序的影响就可能变得很大,如果本来 CPU 负载就比较大,还要分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了 50%,其实也让人无法接受。并且低停顿时间是以牺牲吞吐量为代价的,导致 CPU 利用率变低。 2. 无法处理浮动垃圾。由于并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生。这一部分垃圾出现在标记过程之后,CMS 无法在当次收集中处理掉它们,只好留到下一次 GC 时再清理掉,这一部分垃圾就被称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此它不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。可以使用 -XX:CMSInitiatingOccupancyFraction 的值来改变触发收集器工作的内存占用百分比,JDK 1.5 默认设置下该值为 68,也就是当老年代使用了 68% 的空间之后会触发收集器工作。如果该值设置的太高,导致浮动垃圾无法保存,那么就会出现 Concurrent Mode Failure,此时虚拟机将启动后备预案:临时启用 Serial Old 收集器来重新进行老年代的垃圾收集。 3. 标记-清除算法导致的空间碎片,给大对象分配带来很大麻烦,往往出现老年代空间剩余,但无法找到足够大连续空间来分配当前对象,不得不提前出发一次 Full GC。 G1 收集器 G1(Garbage-First)收集器是当今收集器技术发展最前沿的成果之一,它是一款面向服务端应用的垃圾收集器,HotSpot 开发团队赋予它的使命是(在比较长期的)未来可以替换掉 JDK 1.5 中发布的 CMS 收集器。 具备如下特点: 并行与并发:能充分利用多 CPU 环境下的硬件优势,使用多个 CPU 来缩短停顿时间; 分代收集:分代概念依然得以保留,虽然它不需要其它收集器配合就能独立管理整个 GC 堆,但它能够采用不同方式去处理新创建的对象和已存活一段时间、熬过多次 GC 的旧对象来获取更好的收集效果。 空间整合:整体来看是基于“标记 - 整理”算法实现的收集器,从局部(两个 Region 之间)上来看是基于“复制”算法实现的,这意味着运行期间不会产生内存空间碎片。 可预测的停顿:这是它相对 CMS 的一大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了降低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内,消耗在 GC 上的时间不得超过 N 毫秒,这几乎已经是实时 Java(RTSJ)的垃圾收集器的特征了。 在 G1 之前的其他收集器进行收集的范围都是整个新生代或者老生代,而 G1 不再是这样,Java 堆的内存布局与其他收集器有很大区别,将整个 Java 堆划分为多个大小相等的独立区域(Region)。虽然还保留新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,而都是一部分 Region(不需要连续)的集合。 之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个 Java 堆中进行全区域的垃圾收集。它跟踪各个 Region 里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的 Region(这也就是 Garbage-First 名称的来由)。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了它在有限的时间内可以获取尽可能高的收集效率。 Region 不可能是孤立的,一个对象分配在某个 Region 中,可以与整个 Java 堆任意的对象发生引用关系。在做可达性分析确定对象是否存活的时候,需要扫描整个 Java 堆才能保证准确性,这显然是对 GC 效率的极大伤害。为了避免全堆扫描的发生,每个 Region 都维护了一个与之对应的 Remembered Set。虚拟机发现程序在对 Reference 类型的数据进行写操作时,会产生一个 Write Barrier 暂时中断写操作,检查 Reference 引用的对象是否处于不同的 Region 之中,如果是,便通过 CardTable 把相关引用信息记录到被引用对象所属的 Region 的 Remembered Set 之中。当进行内存回收时,在 GC 根节点的枚举范围中加入 Remembered Set 即可保证不对全堆扫描也不会有遗漏。 如果不计算维护 Remembered Set 的操作,G1 收集器的运作大致可划分为以下几个步骤: 1.初始标记 2.并发标记 3.最终标记:为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程的 Remembered Set Logs 里面,最终标记阶段需要把 Remembered Set Logs 的数据合并到 Remembered Set 中。这阶段需要停顿线程,但是可并行执行。 4.筛选回收:首先对各个 Region 中的回收价值和成本进行排序,根据用户所期望的 GC 停顿是时间来制定回收计划。此阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分 Region,时间是用户可控制的,而且停顿用户线程将大幅度提高收集效率。 七种垃圾收集器的比较 收集器 串行、并行 or 并发 新生代 / 老年代 算法 目标 适用场景 Serial 串行 新生代 复制算法 响应速度优先 单 CPU 环境下的 Client 模式 Serial Old 串行 老年代 标记-整理 响应速度优先 单 CPU 环境下的 Client 模式、CMS 的后备预案 ParNew 并行 新生代 复制算法 响应速度优先 多 CPU 环境时在 Server 模式下与 CMS 配合 Parallel Scavenge 并行 新生代 复制算法 吞吐量优先 在后台运算而不需要太多交互的任务 Parallel Old 并行 老年代 标记-整理 吞吐量优先 在后台运算而不需要太多交互的任务 CMS 并发 老年代 标记-清除 响应速度优先 集中在互联网站或 B/S 系统服务端上的 Java 应用 G1 并发 both 标记-整理 + 复制算法 响应速度优先 面向服务端应用,将来替换 CMS

垃圾回收机制

标签:过多   资源   提高   大连   吞吐量   负载   任务   记录   用户   

原文地址:https://www.cnblogs.com/llaq/p/9458011.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!