码迷,mamicode.com
首页 > 其他好文 > 详细

线性代数的本质-01-向量究竟是什么?

时间:2018-08-11 20:52:38      阅读:116      评论:0      收藏:0      [点我收藏+]

标签:二维   rom   起点   坐标轴   目的   区分   线性   加法   本质   

  前言--在线性代数的本质视频中,里面部分概念与内容没有完全理解。现在,做一个博客系列在完整的复习一遍,争取能够深入理解,同时对于弹幕以及评论中的提出的问题,在每个章节后面给出思考。同时,这个课程的直接目的,是对线性代数有一个直观的理解,所以,博客的目的即为对课程知识有一个直观理解。OK,为了抓紧过一遍,现在立即开始!

   线性代数中,向量常常是以坐标原点起点(origin)Origin同时可以看作是整个空间的中心和所有向量的根源

   向量的坐标由一对数构成,这对数表示为向量沿着坐标轴(基向量)移动的单位距离,同时这对数通常竖着写,并用方括号阔起,用以区分点的表示。另外,每一个向量拥有唯一的坐标表示。 

   向量的两个基本运算:向量的加法,向量的数乘。

  • 向量加法(联想为位移)的定义,几乎是线性代数中唯一允许向量离开原点的情形。“向量是有序的数字列表,向量加法就是对应项(基向量的位移)做加法”。
直观阐述:每个向量联想为汽车移动路线,那么汽车按照规划路线(即向量)从原点出发笔直行驶,加法即为衔接处,转弯后继续笔直行驶,直至终点。那么,汽车所达到的终点位置,即可看作是新得到向量终点,起点为原点,同时用线性描述。按照上述路线,二维世界中汽车行驶过程可以看作是沿着x轴行驶的位移,加上,沿着y轴行驶的位移,最后理解为对应相相加。
  • 向量数乘,标量对原始向量的缩放。(联想为向量的加法,更加简单直观一些)
直观阐述:对应项均乘以缩放大小,得到2倍于原始向量的新向量。

 

线性代数的本质-01-向量究竟是什么?

标签:二维   rom   起点   坐标轴   目的   区分   线性   加法   本质   

原文地址:https://www.cnblogs.com/sky-z/p/9460881.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!