码迷,mamicode.com
首页 > 其他好文 > 详细

P1057 传球游戏

时间:2018-08-12 17:34:35      阅读:119      评论:0      收藏:0      [点我收藏+]

标签:方法   游戏   hit   region   多少   方式   理解   假设   输入输出   

题目描述

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

游戏规则是这样的: nnn 个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了 mmm 次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学 111 号、 222 号、 333 号,并假设小蛮为 111 号,球传了 333 次回到小蛮手里的方式有 111 -> 222 -> 333 -> 111 和 111 -> 333 -> 222 -> 111 ,共 222 种。

输入输出格式

输入格式:

 

一行,有两个用空格隔开的整数 n,m(3≤n≤30,1≤m≤30)n,m(3 \le n \le 30,1 \le m \le 30)n,m(3n30,1m30) 。

 

输出格式:

 

111 个整数,表示符合题意的方法数。

 

输入输出样例

输入样例#1: 复制
3 3
输出样例#1: 复制
2

说明

40%的数据满足: 3≤n≤30,1≤m≤203 \le n \le 30,1 \le m \le 203n30,1m20

100%的数据满足: 3≤n≤30,1≤m≤303 \le n \le 30,1 \le m \le 303n30,1m30

 

思路:

k次传球一定是k-1次左右人的传球情况相加,注意:我们把0也作为传球的情况来理解要更加全面一些。

具体代码如下:

#include<cstdio>
#define MAXN 34
int dp[MAXN][MAXN];
int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    dp[1][0] = 1;
    for (int i = 1; i <= m; ++i)
    {
        dp[1][i] = dp[2][i - 1] + dp[n][i - 1];
        for (int j = 2; j < n; ++j)
            dp[j][i] = dp[j - 1][i-1] + dp[j + 1][i-1];
        dp[n][i] = dp[1][i - 1] + dp[n - 1][i - 1];
    }
    printf("%d\n", dp[1][m]);
}

 

P1057 传球游戏

标签:方法   游戏   hit   region   多少   方式   理解   假设   输入输出   

原文地址:https://www.cnblogs.com/ALINGMAOMAO/p/9463195.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!