码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习与深度学习

时间:2018-08-12 17:36:49      阅读:183      评论:0      收藏:0      [点我收藏+]

标签:支持向量机   世界   基于   权重   均值   学习   所有权   向量   neu   

1.机器学习相关算法:

线性回归、K-means、决策树、随机森林、主成分分析、支持向量机,强化学习,贝叶斯网络

 

线性回归:解决数据预测问题,曲线弥合,已知{x1,x2,x3,...} , {y1,y2,y3,...} , 用一条曲线描述已知点的规律。 常用:最小二乘法。

 

K-means : 用距离给离散的数据聚类,  首先给出几个中心点,以中心点聚类 =》 求 每个分类的均值,如果均值等于中心点,结束,如果不相等,以均值为中心点,再次聚类。

 

决策树: 多个特征,每个特征权重不同,特征进行分类,形成一棵树, 常见算法有 ID3,C4,5,  LR+ BGDT, 

 

随机森林:多棵决策树,组成森林。

 

贝叶斯网络:解决逆概率问题。

 

2。 深度学习:

 

基于人工神经网络,多层神经网络,神经元

 

机器学习与深度学习 区别:

机器学习是用算法真正解析数据,不断学习,然后对世界中发生的事做出判断和预测。

深度学习是每一个神经元会对输入的信息进行权衡,确定权重,搞清它与所执行任务的关系,比如有多正确或者多么不正确。最终的结果由所有权重来决定。最终会给出一个概率,例如:吴恩达用几千万张图片来识别猫。

 

 

机器学习与深度学习

标签:支持向量机   世界   基于   权重   均值   学习   所有权   向量   neu   

原文地址:https://www.cnblogs.com/songsh/p/9463108.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!