标签:选择 开始 招聘 分析 没有 分配 生产 lag 系统
clc clear f = [-7;-5]; A = [3 2 4 6 0 7]; b = [80;220;230]; lb = zeros(2,1);
然后调用 linprog 函数:
[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb)
最优化结果如下:
2.工作人员计划安排问题
clc clear f = [1;1;1;1;1;1]; A = [-1 0 0 0 0 -1 -1 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 -1]; b = [-50;-30;-70;-60;-40;-20]; lb = zeros(6,1);
[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb)
可见只要 6 个时段分别安排 26 人、25 人、45 人、26 人、14 人和 24 人就可以满足值班的需要,共计 160 人,并且计算结果 exitflag = 1 是收敛的
3. 投资问题
f = [-0.18;-0.1;-0.09;-0.12]; A = [1 -1 -1 -1 0 -1 -1 1]; b = [0;0]; Aeq = [1 1 1 1]; beq = [1]; lb = zeros(4,1);
[x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb)
说明 A、B、C、D 投入资金的百分比分别为 50%、25%、0%、25% 时,该单位收益最大
4. 工件加工任务分配问题
clc clear f = [13;9;10;11;12;8]; A = [0.6 1.2 1.1 0 0 0 0 0 0 0.4 1.2 1.0]; b = [600;900]; Aeq = [1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1]; beq = [400 600 500]; lb = zeros(6,1);
然后调用 linprog 函数:
[x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb)
结果如下:
在甲机床上加工 500 个工件 2,在乙机床上加工 400 个工件 1、加工 100 个工件 2、加工 500 个工件 3,可在满足条件的情况下使总加工费用最小,最小费用为 14100 元。
5. 厂址选择问题
clc clear f = [75;75;50;50;100;100;150;240;210;120;160;220]; A = [1 -1 1 -1 0 0 3 3 0 0 0 0 -1 1 0 0 1 -1 0 0 3 3 0 0 0 0 -1 1 -1 1 0 0 0 0 3 3 0 0 0 0 0 0 0 0 1 1 0 0]; b = [21;17;22;6]; Aeq = [0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1]; beq = [6;12]; lb = zeros(12,1); [x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb);
可见要使总费用最小,A、B、C 三地的建厂规模分别为 6 万吨、5.667 万吨和 6.333 万吨,最小总费用为 2.9733e+03 万元
6. 确定职工编制问题
clc clear f = [40;36]; A = [1 0 0 1 -5 -3]; b = [7;8;-45]; lb = zeros(2,1); [x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);
可见,招聘一级检验员 7名,二级检验员 3名可使总检验费用最少,约为400.00元
7. 生产计划的最优化问题
clc clear f = [-5;-3]; A = [4 3 5 4 6 3]; b = [11;9;12]; lb = zeros(2,1); [x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb)
每天生产 A 产品 1.80吨、B产品 0 吨可使工厂获得最大利益 9000元/吨。
标签:选择 开始 招聘 分析 没有 分配 生产 lag 系统
原文地址:https://www.cnblogs.com/NikkiNikita/p/9464886.html