码迷,mamicode.com
首页 > 其他好文 > 详细

Numpy的学习2-基础运算1

时间:2018-08-13 23:50:40      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:计算   span   逻辑判断   代码   很多   pre   多维度   array   相减   

import numpy as np
a=np.array([10,20,30,40])   # array([10, 20, 30, 40])
b=np.arange(4)              # array([0, 1, 2, 3])

print(a,b)
c=a-b
print(c)
‘‘‘
[10 20 30 40] [0 1 2 3]
[10 19 28 37]
可以看到满足矩阵的减法运算,对应元素相减
‘‘‘

c=a*b   # array([  0,  20,  60, 120])#a,b对应元素相乘法
c=b**2  # array([0, 1, 4, 9])       #每个元素对应2次方

# 另外,Numpy中具有很多的数学函数工具,比如三角函数等,当我们需要对矩阵中每一项元素进行函数运算时,可以很简便的调用它们(以sin函数为例):
c=10*np.sin(a)
# array([-5.44021111,  9.12945251, -9.88031624,  7.4511316 ])

# 除了函数应用外,在脚本中对print函数进行一些修改可以进行逻辑判断:
# 如果想要执行是否相等的判断, 依然需要输入 == 而不是 = 来完成相应的逻辑判断。
print(b<3)
# array([ True,  True,  True, False], dtype=bool)

‘‘‘
上述运算均是建立在一维矩阵,即只有一行的矩阵上面的计算,如果我们想要对多行多维度的矩阵进行操作,需要对开始的脚本进行一些修改:
‘‘‘

a=np.array([[1,1],[0,1]])
b=np.arange(4).reshape((2,2))

print(a)
# array([[1, 1],
#       [0, 1]])

print(b)
# array([[0, 1],
#       [2, 3]])

# Numpy中的矩阵乘法分为两种, 其一是前文中的对应元素相乘,其二是标准的矩阵乘法运算,即对应行乘对应列得到相应元素:
c_dot = np.dot(a,b) #可以看到np.dot就表示numpy中的矩阵想乘,这里要注意的是,矩阵相乘的元素必须是numpy中的数据元素
c_dot_2 = a.dot(b) #另外的一种表示方式
print(c_dot)
# array([[2, 4],
#       [2, 3]])


# 来看看关于 sum(), min(), max()的使用:
a=np.random.random((2,4))
print(a)
print(np.sum(a),np.min(a),np.max(a))

‘‘‘
如果你需要对行或者列进行查找运算,就需要在上述代码中为 axis 进行赋值。 
当axis的值为0的时候,将会以列作为查找单元, 当axis的值为1的时候,将会以行作为查找单元。
‘‘‘
print("a =",a)
# a = [[ 0.23651224  0.41900661  0.84869417  0.46456022]
# [ 0.60771087  0.9043845   0.36603285  0.55746074]]
print("sum =",np.sum(a,axis=1)) # sum = [ 1.96877324 2.43558896] 
print("min =",np.min(a,axis=0)) # min = [ 0.23651224 0.41900661 0.36603285 0.46456022]
print("max =",np.max(a,axis=1)) # max = [ 0.84869417 0.9043845 ]

  需要注意的是dot表示的是矩阵相乘,而*表示的的是对应元素相乘

  对于要对列或者行进行查找运算的时候(这是个需求,比如在RNN中,节点的Weight矩阵是分为输入数据和当前状态两个部分,有分开讨论的需求)

  加入axis=1表示以行为查找,axis为0表示以列为查找

        当不满足矩阵乘法的规则时候(shape不满足),运算会出问题,所以要认真检查shape

Numpy的学习2-基础运算1

标签:计算   span   逻辑判断   代码   很多   pre   多维度   array   相减   

原文地址:https://www.cnblogs.com/simon-idea/p/9471551.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!