码迷,mamicode.com
首页 > 其他好文 > 详细

搭建docker-spark-hadoop-hive-zeppelin分布式集群环境

时间:2018-08-14 22:03:31      阅读:542      评论:0      收藏:0      [点我收藏+]

标签:.exe   open   cassandra   splay   inter   soc   atp   restart   led   

一、软件准备

1、基础docker镜像:ubuntu,目前最新的版本是18

2、需准备的环境软件包:

(1) spark-2.3.0-bin-hadoop2.7.tgz
(2) hadoop-2.7.3.tar.gz
(3) apache-hive-2.3.2-bin.tar.gz
(4) jdk-8u101-linux-x64.tar.gz
(5) mysql-5.5.45-linux2.6-x86_64.tar.gz、mysql-connector-java-5.1.37-bin.jar
(6) scala-2.11.8.tgz
(7) zeppelin-0.8.0-bin-all.tgz

二、ubuntu镜像准备

1、获取官方的镜像:

docker pull ubuntu

2、因官方镜像中的apt源是国外资源,后续扩展安装软件包时较麻烦。先修改为国内源:

(1)启动ubuntu容器,并进入容器中的apt配置目录

docker run -it -d ubuntu
docker exec -it ubuntu /bin/bash
cd /etc/apt

(2)先将原有的源文件备份:

mv sources.list sources.list.bak

 

(3)换为国内源,这里提供阿里的资源。因官方的ubuntu没有艰装vi等软件,使用echo指令写入。需注意一点,资源必须与系统版本匹配。

echo deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse  >> sources.list
echo deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse >> sources.list
echo deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse >> sources.list
echo deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse >> sources.list
echo deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse >> sources.list

3、退出容器,提交镜像

exit
docker commit 容器id ubuntu:latest

生成的ubuntu镜像,就可以做为基础镜像使用。

三、spark-hadoop集群配置

 先前所准备的一列系软件包,在构建镜像时,直接用RUN ADD指令添加到镜像中,这里先将一些必要的配置处理好。

1、Spark配置

(1)spark-env.sh

SPARK_MASTER_WEBUI_PORT=8888

export SPARK_HOME=$SPARK_HOME
export HADOOP_HOME=$HADOOP_HOME
export MASTER=spark://hadoop-maste:7077
export SCALA_HOME=$SCALA_HOME
export SPARK_MASTER_HOST=hadoop-maste


export JAVA_HOME=/usr/local/jdk1.8.0_101

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

(2)spark-default.conf

spark.executor.memory=2G
spark.driver.memory=2G
spark.executor.cores=2
#spark.sql.codegen.wholeStage=false
#spark.memory.offHeap.enabled=true
#spark.memory.offHeap.size=4G
#spark.memory.fraction=0.9
#spark.memory.storageFraction=0.01
#spark.kryoserializer.buffer.max=64m
#spark.shuffle.manager=sort
#spark.sql.shuffle.partitions=600
spark.speculation=true
spark.speculation.interval=5000
spark.speculation.quantile=0.9
spark.speculation.multiplier=2
spark.default.parallelism=1000
spark.driver.maxResultSize=1g
#spark.rdd.compress=false
spark.task.maxFailures=8
spark.network.timeout=300
spark.yarn.max.executor.failures=200
spark.shuffle.service.enabled=true
spark.dynamicAllocation.enabled=true
spark.dynamicAllocation.minExecutors=4
spark.dynamicAllocation.maxExecutors=8
spark.dynamicAllocation.executorIdleTimeout=60
#spark.serializer=org.apache.spark.serializer.JavaSerializer
#spark.sql.adaptive.enabled=true
#spark.sql.adaptive.shuffle.targetPostShuffleInputSize=100000000
#spark.sql.adaptive.minNumPostShufflePartitions=1
##for spark2.0
#spark.sql.hive.verifyPartitionPath=true
#spark.sql.warehouse.dir
spark.sql.warehouse.dir=/spark/warehouse

(3)主节点声明文件:masters

hadoop-maste

(4)从节点文件:slaves

hadoop-node1
hadoop-node2

2、Hadoop配置

(1)hadoop-env.sh


export JAVA_HOME=/usr/local/jdk1.8.0_101

export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"}

for f in $HADOOP_HOME/contrib/capacity-scheduler/*.jar; do
  if [ "$HADOOP_CLASSPATH" ]; then
    export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f
  else
    export HADOOP_CLASSPATH=$f
  fi
done

export HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true"

export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
export HADOOP_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS"

export HADOOP_SECONDARYNAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_SECONDARYNAMENODE_OPTS"

export HADOOP_NFS3_OPTS="$HADOOP_NFS3_OPTS"
export HADOOP_PORTMAP_OPTS="-Xmx512m $HADOOP_PORTMAP_OPTS"

export HADOOP_CLIENT_OPTS="-Xmx512m $HADOOP_CLIENT_OPTS"

export HADOOP_SECURE_DN_USER=${HADOOP_SECURE_DN_USER}

export HADOOP_SECURE_DN_LOG_DIR=${HADOOP_LOG_DIR}/${HADOOP_HDFS_USER}

export HADOOP_PID_DIR=${HADOOP_PID_DIR}
export HADOOP_SECURE_DN_PID_DIR=${HADOOP_PID_DIR}

export HADOOP_IDENT_STRING=$USER

(2)hdfs-site.xml

<?xml version="1.0"?>
<configuration>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/usr/local/hadoop2.7/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/usr/local/hadoop2.7/dfs/data</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
    <property>
        <name>dfs.permissions.enabled</name>
        <value>false</value>
    </property>
 </configuration>

(3)core-site.xml

<?xml version="1.0"?>
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://hadoop-maste:9000/</value>
    </property>
    <property>
         <name>hadoop.tmp.dir</name>
         <value>file:/usr/local/hadoop/tmp</value>
    </property>
    <property>
        <name>hadoop.proxyuser.root.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.root.groups</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.oozie.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.oozie.groups</name>
        <value>*</value>
    </property>
</configuration>

(4)yarn-site.xml

<?xml version="1.0"?>
<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>hadoop-maste</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>hadoop-maste:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>hadoop-maste:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>hadoop-maste:8035</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>hadoop-maste:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>hadoop-maste:8088</value>
    </property>
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
   </property>
    <property>
       <name>yarn.nodemanager.vmem-pmem-ratio</name>
       <value>5</value>
    </property>
<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>22528</value>
    <discription>每个节点可用内存,单位MB</discription>
  </property>
  
  <property>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>4096</value>
    <discription>单个任务可申请最少内存,默认1024MB</discription>
  </property>
  
  <property>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>16384</value>
    <discription>单个任务可申请最大内存,默认8192MB</discription>
  </property>
</configuration>

(5)mapred-site.xml

<?xml version="1.0"?>
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <!-- 配置实际的Master主机名和端口-->
        <value>hadoop-maste:10020</value>
    </property>
    <property>
        <name>mapreduce.map.memory.mb</name>
        <value>4096</value>
    </property>
    <property>
        <name>mapreduce.reduce.memory.mb</name>
        <value>8192</value>
    </property>
    <property>
      <name>yarn.app.mapreduce.am.staging-dir</name>
      <value>/stage</value>
    </property>
    <property>
      <name>mapreduce.jobhistory.done-dir</name>
      <value>/mr-history/done</value>
    </property>
    <property>
      <name>mapreduce.jobhistory.intermediate-done-dir</name>
      <value>/mr-history/tmp</value>
    </property>
</configuration>

(6)主节点声明文件:master

hadoop-maste

3、hive配置

(1)hive-site.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
<configuration> 
        <property>
                <name>hive.metastore.warehouse.dir</name>
                <value>/home/hive/warehouse</value>
        </property>
        <property>
                <name>hive.exec.scratchdir</name>
                <value>/tmp/hive</value>
        </property>
        <property> 
                <name>hive.metastore.uris</name> 
                <value>thrift://hadoop-hive:9083</value> 
                <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description> 
        </property>
        <property>
                <name>hive.server2.transport.mode</name>
                <value>http</value>
        </property>
        <property>
                <name>hive.server2.thrift.http.port</name>
                <value>10001</value>
        </property>
        
        <property> 
                <name>javax.jdo.option.ConnectionURL</name> 
                <value>jdbc:mysql://hadoop-mysql:3306/hive?createDatabaseIfNotExist=true</value> 
        </property> 
        <property> 
                <name>javax.jdo.option.ConnectionDriverName</name> 
                <value>com.mysql.jdbc.Driver</value> 
        </property> 
        <property> 
                <name>javax.jdo.option.ConnectionUserName</name> 
                <value>root</value> 
        </property> 
        <property> 
                <name>javax.jdo.option.ConnectionPassword</name> 
                <value>root</value> 
        </property> 
        <property> 
                <name>hive.metastore.schema.verification</name> 
                <value>false</value> 
        </property>
        <property>
               <name>hive.server2.authentication</name>
               <value>NONE</value>
        </property> 
</configuration>

4、Zeppelin配置

(1)zeppelin-env.sh

export JAVA_HOME=/usr/local/jdk1.8.0_101
export MASTER=spark://hadoop-maste:7077
export SPARK_HOME=$SPARK_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

(2)zeppelin-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration> <property> <name>zeppelin.server.addr</name> <value>0.0.0.0</value> <description>Server address</description> </property> <property> <name>zeppelin.server.port</name> <value>18080</value> <description>Server port.</description> </property> <property> <name>zeppelin.server.ssl.port</name> <value>18443</value> <description>Server ssl port. (used when ssl property is set to true)</description> </property> <property> <name>zeppelin.server.context.path</name> <value>/</value> <description>Context Path of the Web Application</description> </property> <property> <name>zeppelin.war.tempdir</name> <value>webapps</value> <description>Location of jetty temporary directory</description> </property> <property> <name>zeppelin.notebook.dir</name> <value>notebook</value> <description>path or URI for notebook persist</description> </property> <property> <name>zeppelin.notebook.homescreen</name> <value></value> <description>id of notebook to be displayed in homescreen. ex) 2A94M5J1Z Empty value displays default home screen</description> </property> <property> <name>zeppelin.notebook.homescreen.hide</name> <value>false</value> <description>hide homescreen notebook from list when this value set to true</description> </property> <property> <name>zeppelin.notebook.storage</name> <value>org.apache.zeppelin.notebook.repo.GitNotebookRepo</value> <description>versioned notebook persistence layer implementation</description> </property> <property> <name>zeppelin.notebook.one.way.sync</name> <value>false</value> <description>If there are multiple notebook storages, should we treat the first one as the only source of truth?</description> </property> <property> <name>zeppelin.interpreter.dir</name> <value>interpreter</value> <description>Interpreter implementation base directory</description> </property> <property> <name>zeppelin.interpreter.localRepo</name> <value>local-repo</value> <description>Local repository for interpreter‘s additional dependency loading</description> </property> <property> <name>zeppelin.interpreter.dep.mvnRepo</name> <value>http://repo1.maven.org/maven2/</value> <description>Remote principal repository for interpreter‘s additional dependency loading</description> </property> <property> <name>zeppelin.dep.localrepo</name> <value>local-repo</value> <description>Local repository for dependency loader</description> </property> <property> <name>zeppelin.helium.node.installer.url</name> <value>https://nodejs.org/dist/</value> <description>Remote Node installer url for Helium dependency loader</description> </property> <property> <name>zeppelin.helium.npm.installer.url</name> <value>http://registry.npmjs.org/</value> <description>Remote Npm installer url for Helium dependency loader</description> </property> <property> <name>zeppelin.helium.yarnpkg.installer.url</name> <value>https://github.com/yarnpkg/yarn/releases/download/</value> <description>Remote Yarn package installer url for Helium dependency loader</description> </property> <property> <name>zeppelin.interpreters</name> <value>org.apache.zeppelin.spark.SparkInterpreter,org.apache.zeppelin.spark.PySparkInterpreter,org.apache.zeppelin.rinterpreter.RRepl,org.apache.zeppelin.rinterpreter.KnitR,org.apache.zeppelin.spark.SparkRInterpreter,org.apache.zeppelin.spark.SparkSqlInterpreter,org.apache.zeppelin.spark.DepInterpreter,org.apache.zeppelin.markdown.Markdown,org.apache.zeppelin.angular.AngularInterpreter,org.apache.zeppelin.shell.ShellInterpreter,org.apache.zeppelin.file.HDFSFileInterpreter,org.apache.zeppelin.flink.FlinkInterpreter,,org.apache.zeppelin.python.PythonInterpreter,org.apache.zeppelin.python.PythonInterpreterPandasSql,org.apache.zeppelin.python.PythonCondaInterpreter,org.apache.zeppelin.python.PythonDockerInterpreter,org.apache.zeppelin.lens.LensInterpreter,org.apache.zeppelin.ignite.IgniteInterpreter,org.apache.zeppelin.ignite.IgniteSqlInterpreter,org.apache.zeppelin.cassandra.CassandraInterpreter,org.apache.zeppelin.geode.GeodeOqlInterpreter,org.apache.zeppelin.jdbc.JDBCInterpreter,org.apache.zeppelin.kylin.KylinInterpreter,org.apache.zeppelin.elasticsearch.ElasticsearchInterpreter,org.apache.zeppelin.scalding.ScaldingInterpreter,org.apache.zeppelin.alluxio.AlluxioInterpreter,org.apache.zeppelin.hbase.HbaseInterpreter,org.apache.zeppelin.livy.LivySparkInterpreter,org.apache.zeppelin.livy.LivyPySparkInterpreter,org.apache.zeppelin.livy.LivyPySpark3Interpreter,org.apache.zeppelin.livy.LivySparkRInterpreter,org.apache.zeppelin.livy.LivySparkSQLInterpreter,org.apache.zeppelin.bigquery.BigQueryInterpreter,org.apache.zeppelin.beam.BeamInterpreter,org.apache.zeppelin.pig.PigInterpreter,org.apache.zeppelin.pig.PigQueryInterpreter,org.apache.zeppelin.scio.ScioInterpreter,org.apache.zeppelin.groovy.GroovyInterpreter</value> <description>Comma separated interpreter configurations. First interpreter become a default</description> </property> <property> <name>zeppelin.interpreter.group.order</name> <value>spark,md,angular,sh,livy,alluxio,file,psql,flink,python,ignite,lens,cassandra,geode,kylin,elasticsearch,scalding,jdbc,hbase,bigquery,beam,groovy</value> <description></description> </property> <property> <name>zeppelin.interpreter.connect.timeout</name> <value>30000</value> <description>Interpreter process connect timeout in msec.</description> </property> <property> <name>zeppelin.interpreter.output.limit</name> <value>102400</value> <description>Output message from interpreter exceeding the limit will be truncated</description> </property> <property> <name>zeppelin.ssl</name> <value>false</value> <description>Should SSL be used by the servers?</description> </property> <property> <name>zeppelin.ssl.client.auth</name> <value>false</value> <description>Should client authentication be used for SSL connections?</description> </property> <property> <name>zeppelin.ssl.keystore.path</name> <value>keystore</value> <description>Path to keystore relative to Zeppelin configuration directory</description> </property> <property> <name>zeppelin.ssl.keystore.type</name> <value>JKS</value> <description>The format of the given keystore (e.g. JKS or PKCS12)</description> </property> <property> <name>zeppelin.ssl.keystore.password</name> <value>change me</value> <description>Keystore password. Can be obfuscated by the Jetty Password tool</description> </property> <!-- <property> <name>zeppelin.ssl.key.manager.password</name> <value>change me</value> <description>Key Manager password. Defaults to keystore password. Can be obfuscated.</description> </property> --> <property> <name>zeppelin.ssl.truststore.path</name> <value>truststore</value> <description>Path to truststore relative to Zeppelin configuration directory. Defaults to the keystore path</description> </property> <property> <name>zeppelin.ssl.truststore.type</name> <value>JKS</value> <description>The format of the given truststore (e.g. JKS or PKCS12). Defaults to the same type as the keystore type</description> </property> <!-- <property> <name>zeppelin.ssl.truststore.password</name> <value>change me</value> <description>Truststore password. Can be obfuscated by the Jetty Password tool. Defaults to the keystore password</description> </property> --> <property> <name>zeppelin.server.allowed.origins</name> <value>*</value> <description>Allowed sources for REST and WebSocket requests (i.e. http://onehost:8080,http://otherhost.com). If you leave * you are vulnerable to https://issues.apache.org/jira/browse/ZEPPELIN-173</description> </property> <property> <name>zeppelin.anonymous.allowed</name> <value>true</value> <description>Anonymous user allowed by default</description> </property> <property> <name>zeppelin.username.force.lowercase</name> <value>false</value> <description>Force convert username case to lower case, useful for Active Directory/LDAP. Default is not to change case</description> </property> <property> <name>zeppelin.notebook.default.owner.username</name> <value></value> <description>Set owner role by default</description> </property> <property> <name>zeppelin.notebook.public</name> <value>true</value> <description>Make notebook public by default when created, private otherwise</description> </property> <property> <name>zeppelin.websocket.max.text.message.size</name> <value>1024000</value> <description>Size in characters of the maximum text message to be received by websocket. Defaults to 1024000</description> </property> <property> <name>zeppelin.server.default.dir.allowed</name> <value>false</value> <description>Enable directory listings on server.</description> </property> </configuration>

三、集群启动脚本

整套环境启动较为烦琐,这里将需要的操作写成脚本,在容器启动时,自动运行。

1、环境变量

先前在处理集群配置中,用到许多环境变量,这里统一做定义profile文件,构建容器时,用它替换系统的配置文件,即/etc/profile

profile文件:

if [ "$PS1" ]; then
  if [ "$BASH" ] && [ "$BASH" != "/bin/sh" ]; then
    # The file bash.bashrc already sets the default PS1.
    # PS1=‘\h:\w\$ ‘
    if [ -f /etc/bash.bashrc ]; then
      . /etc/bash.bashrc
    fi
  else
    if [ "`id -u`" -eq 0 ]; then
      PS1=‘# ‘
    else
      PS1=‘$ ‘
    fi
  fi
fi

if [ -d /etc/profile.d ]; then
  for i in /etc/profile.d/*.sh; do
    if [ -r $i ]; then
      . $i
    fi
  done
  unset i
fi

export JAVA_HOME=/usr/local/jdk1.8.0_101
export SCALA_HOME=/usr/local/scala-2.11.8
export HADOOP_HOME=/usr/local/hadoop-2.7.3
export SPARK_HOME=/usr/local/spark-2.3.0-bin-hadoop2.7
export HIVE_HOME=/usr/local/apache-hive-2.3.2-bin
export MYSQL_HOME=/usr/local/mysql

export PATH=$HIVE_HOME/bin:$MYSQL_HOME/bin:$JAVA_HOME/bin:$SCALA_HOME/bin:$HADOOP_HOME/bin:$SPARK_HOME/bin:$PATH

2、SSH配置

各个容器需要通过网络端口连接在一起,为方便连接访问,使用SSH无验证登录

ssh_config文件:

Host localhost
  StrictHostKeyChecking no

Host 0.0.0.0
  StrictHostKeyChecking no
  
Host hadoop-*
   StrictHostKeyChecking no

3、Hadoop集群脚本

(1)启动脚本:start-hadoop.sh

#!/bin/bash
echo -e "\n"

hdfs namenode -format -force

echo -e "\n"

$HADOOP_HOME/sbin/start-dfs.sh

echo -e "\n"

$HADOOP_HOME/sbin/start-yarn.sh

echo -e "\n"

$SPARK_HOME/sbin/start-all.sh

echo -e "\n"

hdfs dfs -mkdir /mr-history

hdfs dfs -mkdir /stage


echo -e "\n":

(2)重启脚本:restart-hadoop.sh

#!/bin/bash
echo -e "\n"

echo -e "\n"

$HADOOP_HOME/sbin/start-dfs.sh

echo -e "\n"

$HADOOP_HOME/sbin/start-yarn.sh

echo -e "\n"

$SPARK_HOME/sbin/start-all.sh

echo -e "\n"

hdfs dfs -mkdir /mr-history

hdfs dfs -mkdir /stage


echo -e "\n"

3、Mysql脚本

(1)mysql 初始化脚本:init_mysql.sh

#!/bin/bash
cd /usr/local/mysql/                                             
echo ..........mysql_install_db --user=root.................
nohup ./scripts/mysql_install_db --user=root &
sleep 3
echo ..........mysqld_safe --user=root.................
nohup ./bin/mysqld_safe --user=root &
sleep 3
echo ..........mysqladmin -u root password ‘root‘.................
nohup ./bin/mysqladmin -u root password ‘root‘ &
sleep 3
echo ..........mysqladmin -uroot -proot shutdown.................
nohup ./bin/mysqladmin -uroot -proot shutdown &
sleep 3
echo ..........mysqld_safe.................
nohup ./bin/mysqld_safe --user=root &
sleep 3
echo ...........................
nohup ./bin/mysql -uroot -proot -e "grant all privileges on *.* to root@‘%‘ identified by ‘root‘ with grant option;"
sleep 3
echo ........grant all privileges on *.* to root@‘%‘ identified by ‘root‘ with grant option...............

4、Hive脚本

(1)hive初始化:init_hive.sh

#!/bin/bash
cd /usr/local/apache-hive-2.3.2-bin/bin
sleep 3
nohup ./schematool -initSchema -dbType mysql &
sleep 3
nohup ./hive --service metastore  &
sleep 3
nohup ./hive --service hiveserver2 &
sleep 5
echo Hive has initiallized!

四、镜像构建

(1)Dockfile

FROM ubuntu:lin
MAINTAINER reganzm 183943842@qq.com

ENV BUILD_ON 2018-03-04

COPY config /tmp
#RUN mv /tmp/apt.conf /etc/apt/
RUN mkdir -p ~/.pip/
RUN mv /tmp/pip.conf ~/.pip/pip.conf

RUN apt-get update -qqy

RUN apt-get -qqy install netcat-traditional vim wget net-tools  iputils-ping  openssh-server libaio-dev apt-utils

RUN pip install pandas  numpy  matplotlib  sklearn  seaborn  scipy tensorflow  gensim #--proxy http://root:1qazxcde32@192.168.0.4:7890/
#添加JDK
ADD ./software/jdk-8u101-linux-x64.tar.gz /usr/local/
#添加hadoop
ADD ./software/hadoop-2.7.3.tar.gz  /usr/local
#添加scala
ADD ./software/scala-2.11.8.tgz /usr/local
#添加spark
ADD ./software/spark-2.3.0-bin-hadoop2.7.tgz /usr/local
#添加Zeppelin
ADD ./software/zeppelin-0.8.0-bin-all.tgz /usr/local
#添加mysql
ADD ./software/mysql-5.5.45-linux2.6-x86_64.tar.gz /usr/local
RUN mv /usr/local/mysql-5.5.45-linux2.6-x86_64  /usr/local/mysql
ENV MYSQL_HOME /usr/local/mysql

#添加hive
ADD ./software/apache-hive-2.3.2-bin.tar.gz /usr/local
ENV HIVE_HOME /usr/local/apache-hive-2.3.2-bin
RUN echo "HADOOP_HOME=/usr/local/hadoop-2.7.3"  | cat >> /usr/local/apache-hive-2.3.2-bin/conf/hive-env.sh
#添加mysql-connector-java-5.1.37-bin.jar到hive的lib目录中
ADD ./software/mysql-connector-java-5.1.37-bin.jar /usr/local/apache-hive-2.3.2-bin/lib
RUN cp /usr/local/apache-hive-2.3.2-bin/lib/mysql-connector-java-5.1.37-bin.jar /usr/local/spark-2.3.0-bin-hadoop2.7/jars

#增加JAVA_HOME环境变量
ENV JAVA_HOME /usr/local/jdk1.8.0_101
#hadoop环境变量
ENV HADOOP_HOME /usr/local/hadoop-2.7.3 
#scala环境变量
ENV SCALA_HOME /usr/local/scala-2.11.8
#spark环境变量
ENV SPARK_HOME /usr/local/spark-2.3.0-bin-hadoop2.7
#Zeppelin环境变量
ENV ZEPPELIN_HOME /usr/local/zeppelin-0.8.0-bin-all
#将环境变量添加到系统变量中
ENV PATH $HIVE_HOME/bin:$MYSQL_HOME/bin:$SCALA_HOME/bin:$SPARK_HOME/bin:$ZEPPELIN_HOME/bin:$HADOOP_HOME/bin:$JAVA_HOME/bin:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$PATH

RUN ssh-keygen -t rsa -f ~/.ssh/id_rsa -P ‘‘ &&     cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys &&     chmod 600 ~/.ssh/authorized_keys

COPY config /tmp
#将配置移动到正确的位置
RUN mv /tmp/ssh_config    ~/.ssh/config &&     mv /tmp/profile /etc/profile &&     mv /tmp/masters $SPARK_HOME/conf/masters &&     cp /tmp/slaves $SPARK_HOME/conf/ &&     mv /tmp/spark-defaults.conf $SPARK_HOME/conf/spark-defaults.conf &&     mv /tmp/spark-env.sh $SPARK_HOME/conf/spark-env.sh && \ 
    mv /tmp/zeppelin-env.sh $ZEPPELIN_HOME/conf/zeppelin-env.sh &&     mv /tmp/zeppelin-site.xml $ZEPPELIN_HOME/conf/zeppelin-site.xml &&     cp /tmp/hive-site.xml $SPARK_HOME/conf/hive-site.xml &&     mv /tmp/hive-site.xml $HIVE_HOME/conf/hive-site.xml &&     mv /tmp/hadoop-env.sh $HADOOP_HOME/etc/hadoop/hadoop-env.sh &&     mv /tmp/hdfs-site.xml $HADOOP_HOME/etc/hadoop/hdfs-site.xml && \ 
    mv /tmp/core-site.xml $HADOOP_HOME/etc/hadoop/core-site.xml &&     mv /tmp/yarn-site.xml $HADOOP_HOME/etc/hadoop/yarn-site.xml &&     mv /tmp/mapred-site.xml $HADOOP_HOME/etc/hadoop/mapred-site.xml &&     mv /tmp/master $HADOOP_HOME/etc/hadoop/master &&     mv /tmp/slaves $HADOOP_HOME/etc/hadoop/slaves &&     mv /tmp/start-hadoop.sh ~/start-hadoop.sh &&     mkdir -p /usr/local/hadoop2.7/dfs/data &&     mkdir -p /usr/local/hadoop2.7/dfs/name &&     mv /tmp/init_mysql.sh ~/init_mysql.sh && chmod 700 ~/init_mysql.sh &&     mv /tmp/init_hive.sh ~/init_hive.sh && chmod 700 ~/init_hive.sh &&     mv /tmp/restart-hadoop.sh ~/restart-hadoop.sh && chmod 700 ~/restart-hadoop.sh &&     mv /tmp/zeppelin-daemon.sh ~/zeppelin-daemon.sh && chmod 700 ~/zeppelin-daemon.sh

#创建Zeppelin环境需要的目录,设置在zeppelin-env.sh中
RUN mkdir /var/log/zeppelin && mkdir /var/run/zeppelin && mkdir /var/tmp/zeppelin

RUN echo $JAVA_HOME
#设置工作目录
WORKDIR /root
#启动sshd服务
RUN /etc/init.d/ssh start
#修改start-hadoop.sh权限为700
RUN chmod 700 start-hadoop.sh
#修改root密码
RUN echo "root:555555" | chpasswd
CMD ["/bin/bash"]

(2)构建脚本:build.sh

echo build Spark-hadoop images

docker build -t="spark" .

(3)构建镜像,执行:

./build.sh

五、容器构建脚本

(1)创建子网

所有的网络,通过内网连接,这里构建一个名为spark的子网:build_network.sh

echo create network
docker network create --subnet=172.16.0.0/16 spark
echo create success 
docker network ls

(2)容器启动脚本:start_container.sh

echo start hadoop-hive container...
docker run -itd --restart=always --net spark --ip 172.16.0.5 --privileged --name hive --hostname hadoop-hive --add-host hadoop-node1:172.16.0.3 --add-host hadoop-node2:172.16.0.4 --add-host hadoop-mysql:172.16.0.6 --add-host hadoop-maste:172.16.0.2 --add-host zeppelin:172.16.0.7 spark-lin /bin/bash

echo start hadoop-mysql container ...
docker run -itd --restart=always --net spark --ip 172.16.0.6 --privileged --name mysql --hostname hadoop-mysql --add-host hadoop-node1:172.16.0.3 --add-host hadoop-node2:172.16.0.4 --add-host hadoop-hive:172.16.0.5 --add-host hadoop-maste:172.16.0.2 --add-host zeppelin:172.16.0.7  spark-lin /bin/bash

echo start hadoop-maste container ...
docker run -itd --restart=always --net spark --ip 172.16.0.2 --privileged -p 18032:8032 -p 28080:18080 -p 29888:19888 -p 17077:7077 -p 51070:50070 -p 18888:8888 -p 19000:9000 -p 11100:11000 -p 51030:50030 -p 18050:8050 -p 18081:8081 -p 18900:8900 -p 18088:8088 --name hadoop-maste --hostname hadoop-maste  --add-host hadoop-node1:172.16.0.3 --add-host hadoop-node2:172.16.0.4 --add-host hadoop-hive:172.16.0.5 --add-host hadoop-mysql:172.16.0.6 --add-host zeppelin:172.16.0.7  spark-lin /bin/bash

echo "start hadoop-node1 container..."
docker run -itd --restart=always --net spark  --ip 172.16.0.3 --privileged -p 18042:8042 -p 51010:50010 -p 51020:50020 --name hadoop-node1 --hostname hadoop-node1  --add-host hadoop-hive:172.16.0.5 --add-host hadoop-mysql:172.16.0.6 --add-host hadoop-maste:172.16.0.2 --add-host hadoop-node2:172.16.0.4 --add-host zeppelin:172.16.0.7 spark-lin  /bin/bash

echo "start hadoop-node2 container..."
docker run -itd --restart=always --net spark  --ip 172.16.0.4 --privileged -p 18043:8042 -p 51011:50011 -p 51021:50021 --name hadoop-node2 --hostname hadoop-node2 --add-host hadoop-maste:172.16.0.2 --add-host hadoop-node1:172.16.0.3 --add-host hadoop-mysql:172.16.0.6 --add-host hadoop-hive:172.16.0.5 --add-host zeppelin:172.16.0.7 spark-lin /bin/bash

echo "start Zeppeline container..."
docker run -itd --restart=always --net spark  --ip 172.16.0.7 --privileged -p 38080:18080 -p 38443:18443  --name zeppelin --hostname zeppelin --add-host hadoop-maste:172.16.0.2 --add-host hadoop-node1:172.16.0.3  --add-host hadoop-node2:172.16.0.4 --add-host hadoop-mysql:172.16.0.6 --add-host hadoop-hive:172.16.0.5 spark-lin /bin/bash

echo start sshd...
docker exec -it hadoop-maste /etc/init.d/ssh start
docker exec -it hadoop-node1 /etc/init.d/ssh start
docker exec -it hadoop-node2 /etc/init.d/ssh start
docker exec -it hive  /etc/init.d/ssh start
docker exec -it mysql /etc/init.d/ssh start
docker exec -it zeppelin /etc/init.d/ssh start

echo start service...
docker exec -it mysql bash -c "sh ~/init_mysql.sh"
docker exec -it hadoop-maste bash -c "sh ~/start-hadoop.sh" 
docker exec -it hive  bash -c "sh ~/init_hive.sh"
docker exec -it zeppelin bash -c "$ZEPPELIN_HOME/bin/zeppelin-daemon.sh start"

echo finished
docker ps

(3)容器停止并移除:stop_container.sh

docker stop hadoop-maste
docker stop hadoop-node1
docker stop hadoop-node2
docker stop hive
docker stop mysql
docker stop zeppelin
echo stop containers 
docker rm hadoop-maste
docker rm hadoop-node1
docker rm hadoop-node2
docker rm hive
docker rm mysql
docker rm zeppelin

echo rm containers

docker ps

六、运行测试

依次执行如下脚本:

1、创建子网

./build_network.sh

2、启动容器

./start_container.sh

3、进入主节点:

docker exec -it hadoop-maste /bin/bash

jps一下,进程是正常的

技术分享图片

4、访问集群子节点

ssh hadoop-node2

一样可以看到,与主节点类似的进程信息

技术分享图片

5、Spark测试

访问:http://localhost:38080

技术分享图片

 

(2)新建一个note,使用Spark环境

技术分享图片

(3)测试

加载zeppelin的例程:

加载数据:

import org.apache.commons.io.IOUtils
import java.net.URL
import java.nio.charset.Charset

// Zeppelin creates and injects sc (SparkContext) and sqlContext (HiveContext or SqlContext)
// So you don‘t need create them manually

// load bank data
val bankText = sc.parallelize(
    IOUtils.toString(
        new URL("https://s3.amazonaws.com/apache-zeppelin/tutorial/bank/bank.csv"),
        Charset.forName("utf8")).split("\n"))

case class Bank(age: Integer, job: String, marital: String, education: String, balance: Integer)

val bank = bankText.map(s => s.split(";")).filter(s => s(0) != "\"age\"").map(
    s => Bank(s(0).toInt, 
            s(1).replaceAll("\"", ""),
            s(2).replaceAll("\"", ""),
            s(3).replaceAll("\"", ""),
            s(5).replaceAll("\"", "").toInt
        )
).toDF()
bank.registerTempTable("bank")

 可视化报表

技术分享图片

技术分享图片

技术分享图片

 

 

 

OVER!

 

 

 

 

 

 

 

 

 

搭建docker-spark-hadoop-hive-zeppelin分布式集群环境

标签:.exe   open   cassandra   splay   inter   soc   atp   restart   led   

原文地址:https://www.cnblogs.com/Fordestiny/p/9401161.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!