码迷,mamicode.com
首页 > 其他好文 > 详细

DZY Loves Math VI

时间:2018-08-17 16:28:17      阅读:127      评论:0      收藏:0      [点我收藏+]

标签:from   bool   math   pre   love   ++   const   play   char   

Description
给定正整数n,m。求
\[\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)^{gcd(i,j)}\]

Input
一行两个整数n,m。

Output
一个整数,为答案模1000000007后的值。

Sample Input
5 4

Sample Output
424

HINT
数据规模:
1<=n,m<=500000,共有3组数据。

首先推柿子
\[\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)^{gcd(i,j)}\]
\[\sum\limits_{i=1}^n\sum\limits_{j=1}^m(\dfrac{i\times j}{gcd(i,j)})^{gcd(i,j)}\]
\[\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}(\dfrac{d^2\times i\times j}{d})^d[gcd(i,j)==1]\]
\[\sum\limits_{d=1}^nd^d\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}i^d\times j^d\sum\limits_{x|i,x|j}\mu(x)\]
\[\sum\limits_{d=1}^nd^d\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor}\mu(x)\times x^{2d}\sum\limits_{i=1}^{\lfloor\frac{n}{dx}\rfloor}i^d\sum\limits_{j=1}^{\lfloor\frac{m}{dx}\rfloor}j^d\]
然后设\(T=dx\),然后就。。。布星,推不下去了
发现m<=5e5,那不就得了,直接这样求就好,枚举d的时候,维护一下\(f(n)=\sum\limits_{i=1}^n i^d\)即可,复杂度约为\(O(m\log m)\)

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
    int x=0,f=1;char ch=getchar();
    for (;ch<‘0‘||ch>‘9‘;ch=getchar())  if (ch==‘-‘)    f=-1;
    for (;ch>=‘0‘&&ch<=‘9‘;ch=getchar())    x=(x<<1)+(x<<3)+ch-‘0‘;
    return x*f;
}
inline void print(int x){
    if (x>=10)  print(x/10);
    putchar(x%10+‘0‘);
}
const int N=5e5,p=1e9+7;
int prime[N+10],miu[N+10];
bool inprime[N+10];
void prepare(){
    int tot=0; miu[1]=1;
    for (int i=2;i<=N;i++){
        if (!inprime[i])    prime[++tot]=i,miu[i]=-1;
        for (int j=1;j<=tot&&prime[j]*i<=N;j++){
            inprime[i*prime[j]]=1;
            if (i%prime[j]==0)  break;
            miu[i*prime[j]]=-miu[i];
        }
    }
}
int mlt(int a,int b){
    int res=1;
    for (;b;b>>=1,a=1ll*a*a%p)  if (b&1)    res=1ll*res*a%p;
    return res;
}
int val[N+10],sum[N+10];
int main(){
    prepare();
    int n=read(),m=read(),Ans=0;
    if (n>m)    swap(n,m);
    for (int i=1;i<=m;i++)  val[i]=1;
    for (int d=1;d<=n;d++){
        int x=mlt(d,d),res=0,limn=n/d,limm=m/d;
        for (int i=1;i<=limm;i++)   val[i]=1ll*val[i]*i%p,sum[i]=(sum[i-1]+val[i])%p;
        for (int i=1;i<=limn;i++){
            if (!miu[i])    continue;
            res=(res+1ll*val[i]*val[i]%p*sum[limn/i]%p*sum[limm/i]%p*miu[i]+p)%p;
        }
        Ans=(Ans+1ll*x*res%p)%p;
    }
    printf("%d\n",Ans);
    return 0;
}

DZY Loves Math VI

标签:from   bool   math   pre   love   ++   const   play   char   

原文地址:https://www.cnblogs.com/Wolfycz/p/9493616.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!