标签:case 组合 数学 数值 表示 平面 begin 建模 球面
无论做任何事情,人们总是希望以最小的代价获取最大的利益,力求最好!为此,人们发明各式各样的数学工具:导数、积分等。现代优化理论大都来源于处理多元问题时导致的复杂性,它有三个重要的基础:
由此,一个最优化问题需要我们同时具备三种基本的能力:数学建模、公式推导、算法设计。
\[ \begin{aligned} &\min_{x\in ?^n} && f(x) && (\text{等价于 } \max_{x\in ?^n} -f(x))\&\operatorname{s.t.} && \begin{cases} h_i(x) = 0\g_j(x) \leq 0 \end{cases} \end{aligned} \]
除此之外,最优化问题中的无约束问题可以描述为
\[
\underset{x}{\arg \max}\, f(x), (? \underset{x}{\arg \max}\, -f(x))
\]
其中 \(\arg\max\) 符号是指求解当函数 \(f(x)\) 达到最大值 (或最小值) 时 \(x\) 的取值。
根据目标函数与约束函数的不同形式,可以把最优化问题分为不同的类型:
\[ [x,y] = \{λx + (1-λ)y: 0 ≤ λ \leq 1 \}. \]
\[\{x=\displaystyle\sum_{k=1}^n λ_kx_k: λ_k \geq 0, \sum_{k=1}^n λ_k = 1 \}\]
\[{\operatorname{co}(A)} = \bigcap_{α \in I} A_{α}\]
\[ A^{\circ} = \{x: ? y \in X, ? δ= δ(y)>0, \,\operatorname{s.t.}\, |t| > δ, x+ty \in A \} \]
若 \(A\) 是凸集, 且 \(A^{\circ} \neq ?,\) 则称 \(A\) 为凸体. 在赋范线性空间 \((X, ||\cdot ||)\) 中, 凸体 \(A\) 可定义为
若 \(? x,y \in A, x \neq y, ||x|| = ||y||,\) 则 \(||x+y|| < ||x|| + ||y||.\)
若 \(x,y \in S(0, r)(\text{球面})(||x||=||y||=r),\) 则联结 \(x,y\) 线段的中点 \((x+y)/2 \in B(0,r)\)(球体). 即若 \(x,y\) 在同一球面上, 则线段 \([x,y]\) 的中点就位于该球体的内部.
设 \(X\) 为实数域 \(?\) 上的线性空间, \(f\) 是 \(X\) 上的实值泛函, 则
\[
L_f (α) = \{x\in X: f(x) = α, α \in ? \}
\]
称为 \(X\) 中的超平面.
标签:case 组合 数学 数值 表示 平面 begin 建模 球面
原文地址:https://www.cnblogs.com/q735613050/p/9495428.html