标签:ble 状态转移方程 最大和 details subarray tco tail alt sse
问题一(最大和子矩阵) : 有一个 m x n 的矩阵,矩阵的元素可正可负。请找出该矩阵的一个子矩阵(方块),使得其所有元素之和在所有子矩阵中最大。(问题来源:http://acm.pku.edu.cn/JudgeOnline/problem?id=1050)
问题二( 最大 0/1 方块) :有一个 m x n 的矩阵,元素为 0 或 1。一个子矩阵,如果它所有的元素都是 0, 或者都是 1,则称其为一个 0-聚类 或 1-聚类,统称聚类(Cluster)。请找出最大的聚类(元素最多的聚类)(面试题)
这两个问题,除了都是在矩阵上操作之外,似乎没有什么共同之处。其实不然。事实上,它们可以用同一个思路解决。该思路来源于下面的一个问题,具体地说,就是把前两个问题化归成多个问题三:
问题三(和最大的段) :有 n 个有正有负的数排成一行,求某个连续的段,使得其元素之和最大。(问题来源:某面试题。事实上,这也是一道经典题目,具体参考 http://en.wikipedia.org/wiki/Maximum_subarray_problem)
问题四(最大长方形) : 有一个有 n 个项的统计直方图,假定所有的直方条 (bar) 的宽度一样。在所有边与 x 轴 和 y 轴平行的长方形中,求该被该直方图包含的面积最大的长方形。(问题来源:面试经典题目)
分析:动态规划,从左上角开始,如果当前位置为1,那么到当前位置包含的最大正方形边长为左/左上/上的值中的最小值加一,因为边长是由短板控制的。
最大子矩阵和问题可以类比于最大字段和问题,从一维变成二维,dp思路,在输入的时候做一个处理,让a[i,j]变为存放前i行j列的和,降低复杂度。状态转移方程为sum[k+1]=sum[k]<0?0:sum[k]+a[i,j];表示第k行i到j的和。因为a[i,j]为存放前i行j列的和,所以a[i,j]=a[k,j]-a[k,i-1];
// Program to find maximum sum subarray in a given 2D array
#include <stdio.h>
#include <string.h>
#include <limits.h>
#define ROW 4
#define COL 5
// Implementation of Kadane's algorithm for 1D array. The function
// returns the maximum sum and stores starting and ending indexes of the
// maximum sum subarray at addresses pointed by start and finish pointers
// respectively.
int kadane(int* arr, int* start, int* finish, int n)
{
// initialize sum, maxSum and
int sum = 0, maxSum = INT_MIN, i;
// Just some initial value to check for all negative values case
*finish = -1;
// local variable
int local_start = 0;
for (i = 0; i < n; ++i)
{
sum += arr[i];
if (sum < 0)
{
sum = 0;
local_start = i+1;
}
else if (sum > maxSum)
{
maxSum = sum;
*start = local_start;
*finish = i;
}
}
// There is at-least one non-negative number
if (*finish != -1)
return maxSum;
// Special Case: When all numbers in arr[] are negative
maxSum = arr[0];
*start = *finish = 0;
// Find the maximum element in array
for (i = 1; i < n; i++)
{
if (arr[i] > maxSum)
{
maxSum = arr[i];
*start = *finish = i;
}
}
return maxSum;
}
// The main function that finds maximum sum rectangle in M[][]
void findMaxSum(int M[][COL])
{
// Variables to store the final output
int maxSum = INT_MIN, finalLeft, finalRight, finalTop, finalBottom;
int left, right, i;
int temp[ROW], sum, start, finish;
// Set the left column
for (left = 0; left < COL; ++left)
{
// Initialize all elements of temp as 0
memset(temp, 0, sizeof(temp));
// Set the right column for the left column set by outer loop
for (right = left; right < COL; ++right)
{
// Calculate sum between current left and right for every row 'i'
for (i = 0; i < ROW; ++i)
temp[i] += M[i][right];
// Find the maximum sum subarray in temp[]. The kadane()
// function also sets values of start and finish. So 'sum' is
// sum of rectangle between (start, left) and (finish, right)
// which is the maximum sum with boundary columns strictly as
// left and right.
sum = kadane(temp, &start, &finish, ROW);
// Compare sum with maximum sum so far. If sum is more, then
// update maxSum and other output values
if (sum > maxSum)
{
maxSum = sum;
finalLeft = left;
finalRight = right;
finalTop = start;
finalBottom = finish;
}
}
}
// Print final values
printf("(Top, Left) (%d, %d)\n", finalTop, finalLeft);
printf("(Bottom, Right) (%d, %d)\n", finalBottom, finalRight);
printf("Max sum is: %d\n", maxSum);
}
// Driver program to test above functions
int main()
{
int M[ROW][COL] = {{1, 2, -1, -4, -20},
{-8, -3, 4, 2, 1},
{3, 8, 10, 1, 3},
{-4, -1, 1, 7, -6}
};
findMaxSum(M);
return 0;
}
Maximum Submatrix & Largest Rectangle
标签:ble 状态转移方程 最大和 details subarray tco tail alt sse
原文地址:https://www.cnblogs.com/ranjiewen/p/9502985.html