标签:遍历二叉树 print style front been free bin roo sem
1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <string.h> 4 5 //Real capacity is CircularQueueMaxSize -1 6 #define CircularQueueMaxSize 1000 7 #define MaxSize 1000 8 9 typedef int TreeEleType; 10 typedef struct BinarySearchTreeNode* QueueEleType; 11 12 struct BinarySearchTreeNode 13 { 14 TreeEleType Element; 15 struct BinarySearchTreeNode *Left; 16 struct BinarySearchTreeNode *Right; 17 }; 18 19 struct CircularQueue 20 { 21 QueueEleType QueueData[CircularQueueMaxSize]; 22 int Front; 23 int Rear; 24 }; 25 26 struct BinarySearchTreeNode *BinarySearchTreeInit() 27 { 28 struct BinarySearchTreeNode *TreeRoot = NULL; 29 30 return TreeRoot; 31 } 32 33 int CircularQueueIsEmpty(struct CircularQueue *Queue) 34 { 35 return (Queue -> Front == Queue -> Rear); 36 } 37 38 int CircularQueueIsFull(struct CircularQueue *Queue) 39 { 40 return ((Queue -> Rear + 1) % CircularQueueMaxSize == Queue -> Front); 41 } 42 43 struct CircularQueue *CircularQueueInit() 44 { 45 struct CircularQueue *Queue; 46 Queue = malloc(sizeof(struct CircularQueue)); 47 48 Queue -> Front = Queue -> Rear = 0; 49 50 return Queue; 51 } 52 53 //if Queue is full,return 1 54 int CircularQueueEnqueue(struct CircularQueue *Queue,QueueEleType ToBeEnqueue) 55 { 56 if(CircularQueueIsFull(Queue)) 57 { 58 return 1; 59 } 60 else 61 { 62 Queue -> Rear = (Queue -> Rear + 1) % CircularQueueMaxSize; 63 Queue -> QueueData[Queue -> Rear] = ToBeEnqueue; 64 } 65 return 0; 66 } 67 68 //if Queue is empty,return NULL 69 QueueEleType CircularQueueTop(struct CircularQueue *Queue) 70 { 71 if(CircularQueueIsEmpty(Queue)) 72 { 73 return NULL; 74 } 75 else 76 { 77 return Queue -> QueueData[(Queue -> Front + 1) % CircularQueueMaxSize]; 78 } 79 return 0; 80 } 81 82 //if Queue is empty,return 1 83 int CircularQueueDequeue(struct CircularQueue *Queue) 84 { 85 if(CircularQueueIsEmpty(Queue)) 86 { 87 return 1; 88 } 89 else 90 { 91 Queue -> Front = (Queue -> Front + 1) % CircularQueueMaxSize; 92 return 0; 93 } 94 } 95 96 int MakeCircularQueueEmpty(struct CircularQueue *Queue) 97 { 98 Queue -> Front = Queue -> Rear = 0; 99 100 return 0; 101 } 102 103 int CircularQueueDelete(struct CircularQueue *Queue) 104 { 105 free(Queue); 106 Queue = NULL; 107 return 0; 108 } 109 int BinarySearchTreeDestroy(struct BinarySearchTreeNode *TreeRoot) 110 { 111 if(TreeRoot != NULL) 112 { 113 BinarySearchTreeDestroy(TreeRoot -> Left); 114 BinarySearchTreeDestroy(TreeRoot -> Right); 115 free(TreeRoot); 116 } 117 return 0; 118 } 119 120 struct BinarySearchTreeNode *BinarySearchTreeNodeFind(TreeEleType ToBeFind,struct BinarySearchTreeNode *TreeRoot) 121 { 122 if(TreeRoot==NULL) 123 { 124 return NULL; 125 } 126 127 if(ToBeFind < TreeRoot -> Element) 128 { 129 return BinarySearchTreeNodeFind(ToBeFind,TreeRoot->Left); 130 } 131 else if(ToBeFind > TreeRoot -> Element) 132 { 133 return BinarySearchTreeNodeFind(ToBeFind,TreeRoot->Right); 134 } 135 else 136 { 137 return TreeRoot; 138 } 139 } 140 141 struct BinarySearchTreeNode *BinarySearchTreeNodeFindMin(struct BinarySearchTreeNode *TreeRoot) 142 { 143 if(TreeRoot==NULL) 144 { 145 return NULL; 146 } 147 else if(TreeRoot->Left==NULL) 148 { 149 return TreeRoot; 150 } 151 else 152 { 153 return BinarySearchTreeNodeFindMin(TreeRoot->Left); 154 } 155 } 156 157 struct BinarySearchTreeNode *BinarySearchTreeNodeFindMax(struct BinarySearchTreeNode *TreeRoot) 158 { 159 if(TreeRoot==NULL) 160 { 161 return NULL; 162 } 163 else if(TreeRoot->Right==NULL) 164 { 165 return TreeRoot; 166 } 167 else 168 { 169 return BinarySearchTreeNodeFindMax(TreeRoot->Right); 170 } 171 } 172 173 //be careful of return NULL 174 struct BinarySearchTreeNode *BinarySearchTreeNodeInsert(TreeEleType ToBeInsert,struct BinarySearchTreeNode *TreeRoot) 175 { 176 if(TreeRoot==NULL) 177 { 178 TreeRoot = malloc(sizeof(struct BinarySearchTreeNode)); 179 TreeRoot -> Element = ToBeInsert; 180 TreeRoot -> Left = TreeRoot -> Right = NULL; 181 } 182 else if(ToBeInsert < TreeRoot->Element) 183 { 184 TreeRoot -> Left = BinarySearchTreeNodeInsert(ToBeInsert,TreeRoot->Left); 185 } 186 else if(ToBeInsert > TreeRoot->Element) 187 { 188 TreeRoot -> Right = BinarySearchTreeNodeInsert(ToBeInsert,TreeRoot->Right); 189 } 190 return TreeRoot; 191 } 192 193 //if doesn‘t find,return NULL 194 struct BinarySearchTreeNode *BinarySearchTreeNodeDelete(TreeEleType ToBeDelete,struct BinarySearchTreeNode *TreeRoot) 195 { 196 if(TreeRoot == NULL) 197 return NULL; 198 199 struct BinarySearchTreeNode *TmpCell; 200 201 if(ToBeDelete < TreeRoot -> Element) 202 { 203 TreeRoot -> Left = BinarySearchTreeNodeDelete(ToBeDelete,TreeRoot->Left); 204 } 205 else if(ToBeDelete > TreeRoot -> Element) 206 { 207 TreeRoot -> Right = BinarySearchTreeNodeDelete(ToBeDelete,TreeRoot->Right); 208 } 209 else //if(ToBeDelete == TreeRoot -> Element) 210 { 211 if(TreeRoot->Left && TreeRoot->Right) 212 { 213 TmpCell = BinarySearchTreeNodeFindMin(TreeRoot -> Right); 214 TreeRoot -> Element = TmpCell -> Element; 215 TreeRoot -> Right = BinarySearchTreeNodeDelete(TreeRoot->Element,TreeRoot->Right); 216 } 217 else 218 { 219 TmpCell = TreeRoot; 220 if(TreeRoot->Left==NULL) 221 { 222 TreeRoot = TreeRoot -> Right; 223 } 224 else if(TreeRoot->Right==NULL) 225 { 226 TreeRoot = TreeRoot -> Left; 227 } 228 free(TmpCell); 229 } 230 } 231 return TreeRoot; 232 } 233 234 int BinarySearchTreeLevelOrder(struct BinarySearchTreeNode *TreeRoot) 235 { 236 struct CircularQueue *Queue; 237 Queue = CircularQueueInit(); 238 CircularQueueEnqueue(Queue,TreeRoot); 239 while(!CircularQueueIsEmpty(Queue)) 240 { 241 struct BinarySearchTreeNode *NodePtr = CircularQueueTop(Queue); 242 printf("%d ",NodePtr->Element); 243 CircularQueueDequeue(Queue); 244 if(NodePtr->Left != NULL) 245 { 246 CircularQueueEnqueue(Queue,NodePtr->Left); 247 } 248 if(NodePtr->Right != NULL) 249 { 250 CircularQueueEnqueue(Queue,NodePtr->Right); 251 } 252 } 253 return 0; 254 } 255 256 int main() 257 { 258 struct BinarySearchTreeNode *TreeRoot = BinarySearchTreeInit(); 259 TreeRoot = BinarySearchTreeNodeInsert(5,TreeRoot); 260 TreeRoot = BinarySearchTreeNodeInsert(6,TreeRoot); 261 TreeRoot = BinarySearchTreeNodeInsert(3,TreeRoot); 262 TreeRoot = BinarySearchTreeNodeInsert(7,TreeRoot); 263 TreeRoot = BinarySearchTreeNodeInsert(2,TreeRoot); 264 TreeRoot = BinarySearchTreeNodeInsert(4,TreeRoot); 265 TreeRoot = BinarySearchTreeNodeInsert(1,TreeRoot); 266 BinarySearchTreeLevelOrder(TreeRoot); 267 return 0; 268 }
标签:遍历二叉树 print style front been free bin roo sem
原文地址:https://www.cnblogs.com/Asurudo/p/9504844.html