标签:oid dft one bsp 多项式 bool display log alt
FFT 实际是 DFT 的一种快速实现方法
可以将多项式的乘法从 O(n^2) 优化到 O(nlogn)
暂时没有看到很好的科普文章、原理自行百度吧
#define L(x) (1 << (x)) const double PI = acos(-1.0); const int maxn = (1<<17) + (int)1e3; double ax[maxn], ay[maxn], bx[maxn], by[maxn]; int revv(int x, int bits) { int ret = 0; for (int i = 0; i < bits; i++){ ret <<= 1; ret |= x & 1; x >>= 1; } return ret; } void fft(double * a, double * b, int n, bool rev) { int bits = 0; while (1 << bits < n) ++bits; for (int i = 0; i < n; i++){ int j = revv(i, bits); if (i < j) swap(a[i], a[j]), swap(b[i], b[j]); } for (int len = 2; len <= n; len <<= 1){ int half = len >> 1; double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len); if (rev) wmy = -wmy; for (int i = 0; i < n; i += len){ double wx = 1, wy = 0; for (int j = 0; j < half; j++){ double cx = a[i + j], cy = b[i + j]; double dx = a[i + j + half], dy = b[i + j + half]; double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx; a[i + j] = cx + ex, b[i + j] = cy + ey; a[i + j + half] = cx - ex, b[i + j + half] = cy - ey; double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wmx; wx = wnx, wy = wny; } } } if (rev){ for (int i = 0; i < n; i++) a[i] /= n, b[i] /= n; } } int Convolution(int a[],int na,int b[],int nb,int ans[]) //两个数组求卷积,有时ans数组要开成long long { int len = max(na, nb), ln; for(ln=0; L(ln)<len; ++ln); len=L(++ln); for (int i = 0; i < len ; ++i){ if (i >= na) ax[i] = 0, ay[i] =0; else ax[i] = a[i], ay[i] = 0; } fft(ax, ay, len, 0); for (int i = 0; i < len; ++i){ if (i >= nb) bx[i] = 0, by[i] = 0; else bx[i] = b[i], by[i] = 0; } fft(bx, by, len, 0); for (int i = 0; i < len; ++i){ double cx = ax[i] * bx[i] - ay[i] * by[i]; double cy = ax[i] * by[i] + ay[i] * bx[i]; ax[i] = cx, ay[i] = cy; } fft(ax, ay, len, 1); for (int i = 0; i < len; ++i) ans[i] = (int)(ax[i] + 0.5); return len; } int Convolution_self(long long a[], int na, int ans[]) //自己跟自己求卷积,有时候ans数组要开成long long { int len = na, ln; for(ln = 0; L(ln) < na; ++ln); len=L(++ln); for(int i = 0; i < len; ++i){ if (i >= na) ax[i] = 0, ay[i] = 0; else ax[i] = a[i], ay[i] = 0; } fft(ax, ay, len, 0); for(int i=0; i<len; ++i){ double cx = ax[i] * ax[i] - ay[i] * ay[i]; double cy = 2 * ax[i] * ay[i]; ax[i] = cx, ay[i] = cy; } fft(ax, ay, len, 1); for(int i=0; i<len; ++i) ans[i] = ax[i] + 0.5; return len; }
标签:oid dft one bsp 多项式 bool display log alt
原文地址:https://www.cnblogs.com/Rubbishes/p/9505036.html