标签:ges 复制 name 垂直 初始 main getchar 大小 for
一道\(DP\)
发现只有\(a,b,c\)三种情况,所以直接初始化成三个\(01\)方阵,找最大子矩阵即可。
我是先初始化垂直上的高度,然后对每一行处理出每个点向左向右的最大延伸,并不断计算矩阵大小来更新答案。
因为不想开函数传数组,所以全写在主函数复制粘贴了三遍。。代码显得比较冗长。
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 1010;
int A[N][N], B[N][N], C[N][N], l[N], r[N];
char re_l()
{
char c = getchar();
for (; c != 'a'&&c != 'b'&&c != 'c'&&c != 'x'&&c != 'y'&&c != 'z'&&c != 'w'; c = getchar());
return c;
}
inline int maxn(int x, int y)
{
return x > y ? x : y;
}
int main()
{
int i, j, ma, n, m;
char c;
while (scanf("%d%d", &n, &m)==2)
{
ma = 1;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
memset(C, 0, sizeof(C));
for (i = 1; i <= n; i++)
for (j = 1; j <= m; j++)
{
c = re_l();
if (c == 'a' || c == 'w' || c == 'y' || c == 'z')
A[i][j] = A[i - 1][j] + 1;
if (c == 'b' || c == 'w' || c == 'x' || c == 'z')
B[i][j] = B[i - 1][j] + 1;
if (c == 'c' || c == 'x' || c == 'y' || c == 'z')
C[i][j] = C[i - 1][j] + 1;
}
for (i = 1; i <= n; i++)
{
for (j = 1; j <= m; j++)
l[j] = r[j] = j;
A[i][0] = A[i][m + 1] = -1;
for (j = 1; j <= m; j++)
while (A[i][j] <= A[i][l[j] - 1])
l[j] = l[l[j] - 1];
for (j = m; j; j--)
while (A[i][j] <= A[i][r[j] + 1])
r[j] = r[r[j] + 1];
for (j = 1; j <= m; j++)
ma = maxn(ma, (r[j] - l[j] + 1)*A[i][j]);
}
for (i = 1; i <= n; i++)
{
for (j = 1; j <= m; j++)
l[j] = r[j] = j;
B[i][0] = B[i][m + 1] = -1;
for (j = 1; j <= m; j++)
while (B[i][j] <= B[i][l[j] - 1])
l[j] = l[l[j] - 1];
for (j = m; j; j--)
while (B[i][j] <= B[i][r[j] + 1])
r[j] = r[r[j] + 1];
for (j = 1; j <= m; j++)
ma = maxn(ma, (r[j] - l[j] + 1)*B[i][j]);
}
for (i = 1; i <= n; i++)
{
for (j = 1; j <= m; j++)
l[j] = r[j] = j;
C[i][0] = C[i][m + 1] = -1;
for (j = 1; j <= m; j++)
while (C[i][j] <= C[i][l[j] - 1])
l[j] = l[l[j] - 1];
for (j = m; j; j--)
while (C[i][j] <= C[i][r[j] + 1])
r[j] = r[r[j] + 1];
for (j = 1; j <= m; j++)
ma = maxn(ma, (r[j] - l[j] + 1)*C[i][j]);
}
printf("%d\n", ma);
}
return 0;
}
ps:因为我用的是\(VS\),所以代码会自动补空格,而我本来的风格是没有空格的。
标签:ges 复制 name 垂直 初始 main getchar 大小 for
原文地址:https://www.cnblogs.com/Iowa-Battleship/p/9519810.html