码迷,mamicode.com
首页 > 其他好文 > 详细

[HAOI2009] 逆序对数列

时间:2018-08-24 20:48:54      阅读:182      评论:0      收藏:0      [点我收藏+]

标签:前缀和   code   ++   int   个数   排列   没有   特殊   class   

[HAOI2009] 逆序对数列

题目大意:求\([1,n]\)的自然数的排列中逆序对数为\(k\)的有多少.

这样来DP

  • 状态:设\(f[i][j]\)\(i\)个数,逆序对数为\(j\)的种类数目

  • 转移方程:\(f[i][j] = \sum \limits _{k=j-i+1}^{j}f[i-1][k]\),\(i\)时最多可以贡献\(i-1\)对逆序对,也就是\(k\)最极限也就\(j-(i+1)\)
  • 优化:前缀和即可

代码

无优化

#include <iostream>
#include <cstdio>

const int Mod = 10000;

int f[1005][1005];

int main(){
    int n, k;
    scanf("%d %d", &n, &k);
    for(int i = 1; i <= n; ++i){
        f[i][0] = 1;
        for(int j = 1; j <= k; ++j){
            for(int q = std::max(j - i + 1, 0); q <= j; ++q){
                f[i][j] = (f[i][j] + f[i - 1][q]) % Mod;
            }
        }
    }
    printf("%d\n", f[n][k]);

    return 0;
}

优化

#include <iostream>
#include <cstdio>

const int Mod = 10000;

int f[1005][1005], sum[1005];

int main(){
    int n, k;
    scanf("%d %d", &n, &k);
    for(int i = 1; i <= n; ++i){
        f[i][0] = 1;
        for(int q = 1; q <= k + 1; ++q){
            sum[q] = (sum[q - 1] + f[i - 1][q - 1]) % Mod;
        }//更新前缀和,这里的要注意下这个前缀和代表的比较特殊,不是普通的i到j是sum[i]-sum[j-1],得加1
        for(int j = 1; j <= k; ++j){
            f[i][j] = (sum[j + 1] - sum[j - i + 1] + Mod) % Mod;
        }//前缀和减去不能达到的
    }
    printf("%d\n", f[n][k]);

    return 0;
}

错误

  • 先写了一遍没有优化的,日常忘记模数
  • 但是因为\(j-i+1\)会小于\(0\),这是不被允许的
  • \(std::max(j-i+1,1)\)不行,因为可以到\(0\),应该是\(std::max(j-i+1,1)\)
  • 优化后因为有个相减再取模,忘记\(+Mod\)

[HAOI2009] 逆序对数列

标签:前缀和   code   ++   int   个数   排列   没有   特殊   class   

原文地址:https://www.cnblogs.com/LMSH7/p/9531774.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!