码迷,mamicode.com
首页 > 其他好文 > 详细

向量与矩阵的范数及其在matlab中的用法(norm)

时间:2018-08-25 13:58:29      阅读:335      评论:0      收藏:0      [点我收藏+]

标签:class   span   最大值   lambda   limits   最小值   sum   向量   over   

一、常数向量范数

  • \(L_0\) 范数

\(\Vert x \Vert _0\overset{def}=向量中非零元素的个数\)

其在matlab中的用法:

sum( x(:) ~= 0 )
  • \(L_1\) 范数

\(\Vert x \Vert_1\overset{def} = \sum\limits_{i=1}^{m} \vert x_{i}\vert = \vert x_{1}\vert + \cdots +\vert x_{m}\vert\),即向量元素绝对值之和

其在matlab中的用法:

norm(x, 1)
  • \(L_2\) 范数

\(\Vert x \Vert_2=(\vert x_1\vert^2+\cdots+\vert x_m\vert^2)^{1/2}\),即向量元素绝对值的平方和后开方

其在matlab中的用法:

norm(x, 2)
  • \(L_{\infty}\) 范数
  • 极大无穷范数

\(\Vert x \Vert_{\infty}= max \{ \vert x_1\vert, \cdots,\vert x_m\vert \}\),即所有向量元素绝对值中的最大值

其在matlab中的用法:

norm(x, inf)
  • 极小无穷范数

\(\Vert x \Vert_{\infty}= min \{ \vert x_1 \vert, \cdots, \vert x_m\vert \}\),即所有向量元素绝对值中的最小值

其在matlab中的用法:

norm(x, -inf)

二、矩阵范数

诱导范数和元素形式范数是矩阵范数的两种主要类型。

1. 诱导范数

  • \(L_1\) 范数(列和范数)

\(\Vert A \Vert_1= \underset{1\leqslant j\leqslant n}{\mathop{\max }}\sum\limits_{i=1}^{m}\{ \vert a_{ij}\vert \}\),即所有矩阵列向量绝对值之和的最大值

其在matlab中的用法:

norm(A,1)
  • \(L_2\) 范数

\(\Vert A \Vert_2=\sqrt{\lambda _{i}}\),其中 \(\lambda_i\)\(A^{T}A\) 的最大特征值。

其在matlab中的用法:

norm(A,2)
  • \(L_{\infty}\) 范数(行和范数)

\(\Vert A \Vert_{\infty}= \underset{1\leqslant i\leqslant m}{\mathop{\max }}\sum\limits_{j=1}^{n}\{\vert a_{ij}\vert\}\),即所有矩阵行向量绝对值之和的最大值

其在matlab中的用法:

norm(A,inf)

2. "元素形式"范数

  • \(L_{0}\) 范数

\(\Vert A \Vert_0\overset{def}=矩阵的非零元素的个数\)

其在matlab中的用法:

sum(sum(A ~= 0))
  • \(L_{1}\) 范数

\(\Vert A \Vert_1\overset{def}=\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}\vert a_{ij}\vert\),即矩阵中的每个元素绝对值之和

其在matlab中的用法:

sum(sum(abs(A)))
  • \(L_{F}\) 范数

\(\Vert A \Vert_F\overset{def}=(\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}\vert a_{ij}\vert^2)^{1/2}\),即矩阵的各个元素平方之和后开方

其在matlab中的用法:

norm(A,'fro')
  • \(L_{\infty}\) 范数

\(\Vert A \Vert_{\infty}= \underset{i=1,\cdots,m;\ j=1,\cdots,n}{\mathop{\max }}\{\vert a_{ij}\vert \}\),即矩阵的各个元素绝对值的最大值

其在matlab中的用法:

max(max(abs(A)))
  • 核范数

\(\Vert A \Vert_{*}= \sum\limits_{i=1}^{n}\lambda_i\)\(\lambda_i\)\(A\) 的奇异值,即所有矩阵奇异值之和

其在matlab中的用法:

sum(svd(A))

向量与矩阵的范数及其在matlab中的用法(norm)

标签:class   span   最大值   lambda   limits   最小值   sum   向量   over   

原文地址:https://www.cnblogs.com/qiuhlee/p/9474650.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!