标签:mat ret putchar read 端点 putc main int 区间
区间dp。
令dp[i][j]表示从[i, j]的最少染色方案数。
很明显,当 i == j 时,dp[i][j] = 1;否则,如果s[i] == s[j],即两个端点颜色相同,那么端点处的颜色只用染一次,也就是说可以从 i 这头染,也可以从 j 这头染,则dp[i][j] = min(dp[i +1][j], dp[i][j - 1]);如果s[i] != s[j],那么我们将[i, j]分两半染色,然后枚举断点k,则dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]),这为什么一定对呢,举个例子:比如[i, j]为RGGBE,断点枚举到RG GBE,此时dp[i][k] + dp[k + 1][j]等于5,然而最优应该是4,不过4的情况是在RGG BE时就得到的,所以dp[i][j]一定能从dp[i][k]和dp[k + 1][j]得到。
1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm> 4 #include<cmath> 5 #include<cstring> 6 #include<cstdlib> 7 #include<vector> 8 #include<queue> 9 #include<stack> 10 #include<cctype> 11 using namespace std; 12 #define enter puts("") 13 #define space putchar(‘ ‘) 14 #define Mem(a) memset(a, 0, sizeof(a)) 15 typedef long long ll; 16 typedef double db; 17 const int INF = 0x3f3f3f3f; 18 const db eps = 1e-8; 19 const int maxn = 55; 20 inline ll read() 21 { 22 ll ans = 0; 23 char ch = getchar(), last = ‘ ‘; 24 while(!isdigit(ch)) last = ch, ch = getchar(); 25 while(isdigit(ch)) ans = (ans << 3) + (ans << 1) + ch - ‘0‘, ch = getchar(); 26 if(last == ‘-‘) ans = -ans; 27 return ans; 28 } 29 inline void write(ll x) 30 { 31 if(x < 0) putchar(‘-‘), x = -x; 32 if(x >= 10) write(x / 10); 33 putchar(x % 10 + ‘0‘); 34 } 35 36 char s[maxn]; 37 int dp[maxn][maxn]; 38 39 int main() 40 { 41 scanf("%s", s + 1); 42 int n = strlen(s + 1); 43 for(int L = 1; L <= n; ++L) 44 for(int i = 1; i + L - 1 <= n; ++i) 45 for(int j = i; j - i + 1 <= L; ++j) 46 { 47 dp[i][j] = INF; //别忘了 48 if(i == j) dp[i][j] = 1; 49 else if(s[i] == s[j]) dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]); 50 else for(int k = i; k <= j; ++k) 51 dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]); 52 } 53 write(dp[1][n]); enter; 54 return 0; 55 }
标签:mat ret putchar read 端点 putc main int 区间
原文地址:https://www.cnblogs.com/mrclr/p/9536890.html