标签:app 无法 时间 节点 自动保存 毫秒级 小文件 不可 内存
1、之所以选择 HDFS 存储数据,是因为 HDFS 具有以下优点:
(1) 高容错性
1) 数据自动保存多个副本。它通过增加副本的形式,提高容错性。
2) 某一个副本丢失以后,它可以自动恢复,这是由 HDFS 内部机制实现的,我们不必关心。
(2) 适合批处理
1) 它是通过移动计算而不是移动数据。
2) 它会把数据位置暴露给计算框架。
(3) 适合大数据处理
1) 数据规模:能够处理数据规模达到 GB、TB、甚至PB级别的数据。
2) 文件规模:能够处理百万规模以上的文件数量,数量相当之大。
3) 节点规模:能够处理10K节点的规模。
(4) 流式数据访问
1) 一次写入,多次读取,不能修改,只能追加。
2) 它能保证数据的一致性。
(5) 可构建在廉价机器上
1) 它通过多副本机制,提高可靠性。
2) 它提供了容错和恢复机制。比如某一个副本丢失,可以通过其它副本来恢复。
2、 HDFS 缺点:
(1) 不适合低延时数据访问;
1) 比如毫秒级的来存储数据,这是不行的,它做不到。
2) 它适合高吞吐率的场景,就是在某一时间内写入大量的数据。但是它在低延时的情况 下是不行的,比如毫秒级以内读取数据,这样它是很难做到的。
改进策略
(2) 无法高效的对大量小文件进行存储
1) 存储大量小文件的话,它会占用 NameNode大量的内存来存储文件、目录和块信息。这样是不可取的,因为NameNode的内存总是有限的。
2) 小文件存储的寻道时间会超过读取时间,它违反了HDFS的设计目标。 改进策略
(3) 并发写入、文件随机修改
1) 一个文件只能有一个写,不允许多个线程同时写。
2) 仅支持数据 append(追加),不支持文件的随机修改。
标签:app 无法 时间 节点 自动保存 毫秒级 小文件 不可 内存
原文地址:https://www.cnblogs.com/wakerwang/p/9541317.html