暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题。由于地上露营湿气重,必须选择在高处的树屋露营。小龙分配的树屋建立在一颗高度为N+1尺(N为正整数)的大树上,正当他发愁怎么爬上去的时候,发现旁边堆满了一些空心四方钢材(如图1.1),经过观察和测量,这些钢材截面的宽和高大小不一,但都是1尺的整数倍,教官命令队员们每人选取N个空心钢材来搭建一个总高度为N尺的阶梯来进入树屋,该阶梯每一步台阶的高度为1尺,宽度也为1尺。如果这些钢材有各种尺寸,且每种尺寸数量充足,那么小龙可以有多少种搭建方法?(注:为了避免夜里踏空,钢材空心的一面绝对不可以向上。)
、以树屋高度为4尺、阶梯高度N=3尺为例,小龙一共有如图1.2所示的5种搭建方法:
一个正整数,表示搭建方法的个数。(注:搭建方法个数可能很大。)
1 #include<iostream>
2 #include<cstdio>
3 #include<cmath>
4 using namespace std;
5
6 int n,a[5009],cnt[1009];
7
8 void Divide(int x,int opt)
9 {
10 for (int i=2; i<=sqrt(x); ++i)
11 while (x%i==0) x/=i,cnt[i]+=opt;
12 if (x>1) cnt[x]+=opt;
13 }
14
15 void Mul(int *a,int b)
16 {
17 int g=0;
18 for (int i=1; i<=a[0]; ++i)
19 a[i]=a[i]*b+g,g=a[i]/10,a[i]%=10;
20 while (g) a[0]++,a[a[0]]=g%10,g/=10;
21 }
22
23 int main()
24 {
25 scanf("%d",&n);
26 for (int i=n+1; i<=2*n; ++i) Divide(i,1);
27 for (int i=2; i<=n+1; ++i) Divide(i,-1);
28 a[0]=a[1]=1;
29 for (int i=2; i<=1000; ++i)
30 while (cnt[i]>=1)
31 Mul(a,i),cnt[i]--;
32 for (int i=a[0]; i>=1; --i)
33 printf("%d",a[i]);
34 }